publication . Conference object . 2020

Seleção de modelos epidemiológicos via análise de sensibilidade global

Michel Tosin; Americo Cunha; Flávio Codeço Coelho;
Open Access Portuguese
  • Published: 23 Nov 2020
  • Publisher: HAL CCSD
  • Country: France
International audience; This paper propose a methodology for epidemiological model selection by using Akaike information criteria bringing as novelty the construction of a likelihood function based in the results of a global sensitivity analysis through the Sobol's indices obtained by using polynomial chaos expansion. The main ideia is to incorporate of the information about the influence of the parameters on the response to select a more interesting model inside of a set of candidates. The strategy is applied to a set of compartmental models compatible with those used to analyze the recent COVID-19 pandemic, allowing to compare them without the presence of expe...
Persistent Identifiers
free text keywords: compartmental models, COVID-19, Sobol's indices, polynomial chaos expansion, Akaike information criteria, [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS], [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST], [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM], [NLIN]Nonlinear Sciences [physics], [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
Related Organizations
Download fromView all 4 versions
Conference object . 2020
Provider: Hal-Diderot
Hyper Article en Ligne
Conference object . 2020

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of Second international symposium on information theory, 267{281.

Brauer, F. (2017). Mathematical epidemiology: past, present, and future. Infectious Disease Modelling, 2(2), 113{127. doi:10.1016/j.idm.2017.02.001.

Diekmann, O., Heesterbeek, J.A.P., and Metz, J.A.J. (1990). On the de nition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4), 365{382. doi:10.1007/BF00178324. [OpenAIRE]

Ducharme, J. (2020). A new study suggests covid-19 reinfection is possible. here's what to know. https: // Acessado: 31/08/2020.

Ghanem, R.G. and Spanos, P.D. (1991). Stochastic nite elements: a spectral approach. Sringer, New York. doi: 10.1007/978-1-4612-3094-6.

Higham, N.J. (2002). Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics, Philadelphia, 2a edition. doi:10.1137/1. 9780898718027.

Instituto Brasileiro de Geogra a e Estat stica (2020). Cidades e estados: Rio de Janeiro, codigo: 3304557. rio-de-janeiro.html. Acessado: 01/10/2020.

Konakli, K. and Sudret, B. (2016). Global sensitivity analysis using low-rank tensor approximations. Reliability Engineering and System Safety, 156, 64{83. doi: 10.1016/j.ress.2016.07.012. [OpenAIRE]

Kuhl, E. (2020). Data-driven modeling of covid-19{lessons learned. Extreme Mechanics Letters, 40, 100921. doi: 10.1016/j.eml.2020.100921.

Marelli, S. and Sudret, B. (2018). UQLab user manual { polynomial chaos expansions. Chair of Risk, Safety and Uncertainty Quanti cation, ETH Zurich.

Okuonghae, D. and Omame, A. (2020). Analysis of a mathematical model for covid-19 population dynamics in lagos, nigeria. Chaos, Solitons and Fractals, 139, 110032. doi:10.1016/j.chaos.2020.110032.

Saltelli, A., Aleksankinac, K., Beckerd, W., P. Fennelle, F.F., Holstf, N., Lig, S., and Wuh, Q. (2019). Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environmental Modelling and Software, 114, 29{39. doi: 10.1016/j.envsoft.2019.01.012.

Simonato, S. (2020). Hc estuda casos de 7 pacientes que podem ter se reinfectado por coronav rus em s~ao paulo: medica do abc relata que voltou a sentir os sintomas meses depois de ter sido infectada pela primeira vez. https://g1. hc-estuda-casos-de-7-pacientes-que-podem-ter -se-reinfectados-por-coronavirus-em-sao-paulo. ghtml. Acessado: 31/08/2020.

Sobol, I.M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling in Civil Engineering, 1(4), 407{414.

Sobol, I.M. (2001). Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Mathematics and Computers in Simulation, 55, 271{

Any information missing or wrong?Report an Issue