Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electricity Anomaly Point Detection using Unsupervised Technique Based on Electricity Load Prediction Derived from Long Short-Term Memory

Authors: Nur Shakirah Md Salleh; Mulyana binti Saripuddin; Azizah Suliman; Bo Nørregaard Jørgensen;

Electricity Anomaly Point Detection using Unsupervised Technique Based on Electricity Load Prediction Derived from Long Short-Term Memory

Abstract

Electricity theft caused a major loss for electricity power provider. The anomaly detection helps to predict the abnormal load usage of a consumer. Usually, the classification method used in anomaly detection. This research paper proposed to identify the potential anomaly points by using threshold and outliers. The prediction in time-series applied Long Short-Term Memory (LSTM) algorithm. The historical electricity load dataset of a single industrial consumer was used to generate the prediction of electricity load. There were five optimizers used to produce the model: Adam, Adadelta, Adagrad, RMSProp, and Stochastic gradient descent (SGD). The prediction model was evaluated using mean squared error (MSE) and mean absolute error (MAE). The best model among all five models was generated by Adadelta optimizer with the error rate value of 0.091982 for MSE and 0.018433 for MAE. The prediction values were generated by this model. The anomaly point was detected by using threshold and outliers. The threshold value was 0.218983. One week in August 2019 was chosen to detect any anomaly load occurrences. There were 24 outliers were found within the selected week. The study shall expand on the electricity usage trend during COVID-19 pandemic period.

Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Stochastic gradient descent Mean squared error Computer science Threshold limit value business.industry Anomaly (natural sciences) Statistics Outlier Word error rate Anomaly detection Electricity business

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
Average
Average
Average
Related to Research communities
COVID-19
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.