publication . Preprint . 2020

Predicted success of prophylactic antiviral therapy to block or delay SARS-CoV-2 infection depends on the drug's mechanism of action

Peter Czuppon; Florence Débarre; Antonio Gonçalves; Olivier Tenaillon; Alan S. Perelson; Jeremie Guedj; François Blanquart;
Open Access English
  • Published: 12 Nov 2020
  • Publisher: HAL CCSD
  • Country: France
Abstract Repurposed drugs that are immediately available and have a good safety profile constitute a first line of defense against new viral infections. Despite a limited antiviral activity against SARS-CoV-2, several drugs serve as candidates for application, not only in infected individuals but also as prophylaxis to prevent infection establishment. Here we use a stochastic model to describe the early phase of a viral infection. We find that the critical efficacy needed to block viral establishment is typically above 80%. This value can be improved by combination therapy. Below the critical efficacy, establishment can still sometimes be prevented; for that purpose, drugs blocking viral entry into target cells (or equivalently enhancing viral clearance) are more effective than drugs reducing viral production or enhancing infected cell death. When a viral infection cannot be prevented because of high exposure or low drug efficacy, antivirals can still delay the time to reach detectable viral loads from 4 days when untreated to up to 30 days. This delay flattens the within-host viral dynamic curve, and possibly reduces transmission and symptom severity. These results suggest that antiviral prophylaxis, even with reduced efficacy, could be efficiently used to prevent or alleviate infection in people at high risk. It could thus be an important component of the strategy to combat the SARS-CoV-2 pandemic in the months or years to come.
Persistent Identifiers
Medical Subject Headings: viruses
free text keywords: [SDV]Life Sciences [q-bio], Viral load, Transmission (medicine), Mechanism (biology), Combination therapy, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Efficacy, Antiviral therapy, Immunology, Medicine, business.industry, business, Viral entry
Communities with gateway
OpenAIRE Connect image
Other Communities
  • COVID-19
Funded by
EC| PolyPath
Insights from within-host dynamics on the coexistence of antibiotic resistant and sensitive pathogens
  • Funder: European Commission (EC)
  • Project Code: 844369
  • Funding stream: H2020 | MSCA-IF-EF-ST
ANR| TheraCoV
Viral dynamics at the individual and population levels: impact for antiviral treatment optimization
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-20-COVI-0018
ANR| TheoGeneDrive
Theoretical Exploration of the Feasibility, Challenges and Risks of Synthetic Gene Drives
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-19-CE45-0009
46 references, page 1 of 4

Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G., & Perelson, A. S. (2006). Kinetics of Influenza A Virus Infection in Humans. Journal of Virology, 80(15):7590-7599. doi: 10.1128/JVI.01623-05.

Baeten, J. M., Donnell, D., Ndase, P., Mugo, N. R., Campbell, J. D., Wangisi, J., Tappero, J. W., Bukusi, E. A., Cohen, C. R., Katabira, E., Ronald, A., Tumwesigye, E., Were, E., Fife, K. H., Kiarie, J., Farquhar, C., John-Stewart, G., Kakia, A., Odoyo, J., Mucunguzi, A., Nakku-Joloba, E., Twesigye, R., Ngure, K., Apaka, C., Tamooh, H., Gabona, F., Mujugira, A., Panteleeff, D., Thomas, K. K., Kidoguchi, L., Krows, M., Revall, J., Morrison, S., Haugen, H., Emmanuel-Ogier, M., Ondrejcek, L., Coombs, R. W., Frenkel, L., Hendrix, C., Bumpus, N. N., Bangsberg, D., Haberer, J. E., Stevens, W. S., Lingappa, J. R., & Celum, C. (2012). Antiretroviral Prophylaxis for HIV Prevention in Heterosexual Men and Women. New England Journal of Medicine, 367(5):399-410. doi: 10.1056/NEJMoa1108524.

Bar-On, Y. M., Flamholz, A., Phillips, R., & Milo, R. (2020). SARS-CoV-2 (COVID-19) by the numbers. eLife, 9. doi: 10.7554/eLife.57309.

Belhadi, D., Peiffer-Smadja, N., Lescure, F.-X., Yazdanpanah, Y., Mentré, F., & Laouénan, C. (2020). A brief review of antiviral drugs evaluated in registered clinical trials for COVID-19. medRxiv. doi: 10.1101/2020.03.18.20038190.

Bi, Q., Wu, Y., Mei, S., Ye, C., Zou, X., Zhang, Z., Liu, X., Wei, L., Truelove, S. A., Zhang, T., Gao, W., Cheng, C., Tang, X., Wu, X., Wu, Y., Sun, B., Huang, S., Sun, Y., Zhang, J., Ma, T., Lessler, J., & Feng, T. (2020). Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. medRxiv. doi: 10.1101/2020.03.03.20028423.

Bonhoeffer, S., May, R. M., Shaw, G. M., & Nowak, M. A. (1997). Virus dynamics and drug therapy. Proceedings of the National Academy of Sciences, 94(13):6971-6976. doi: 10.1073/pnas.94.13.6971. [OpenAIRE]

Cereda, D., Tirani, M., Rovida, F., Demicheli, V., Ajelli, M., Poletti, P., Trentini, F., Guzzetta, G., Marziano, V., Barone, A., Magoni, M., Deandrea, S., Diurno, G., Lombardo, M., Faccini, M., Pan, A., Bruno, R., Parliani, E., Grasselli, G., Piatti, A., Gramegna, A., Baldanti, F., Melegaro, A., & Merler, S. (2020). The early phase of the COVID-19 outbreak in Lombardy, Italy. arXiv:2003.09320 [q-bio]. [OpenAIRE]

Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Piontti, A. P. y., Mu, K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Halloran, M. E., Longini, I. M., & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. doi: 10.1126/science.aba9757. [OpenAIRE]

Conway, J. M., Konrad, B. P., & Coombs, D. (2013). Stochastic analysis of pre- and postexposure prophylaxis against HIV infection. SIAM Journal on Applied Mathematics, 73(2):904-928. doi: 10.1137/120876800.

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5):533 - 534. doi: 30120-1.

Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Fu, H., Gaythorpe, K., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P. G., Walters, C., Winskill, P., Whittaker, C., Donnelly, C. A., Riley, S., & Ghani, A. C. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. page 20.

Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., Bonsall, D., & Fraser, C. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. doi: 10.1126/science.abb6936.

Gonçalves, A., Bertrand, J., Ke, R., Comets, E., de Lamballerie, X., Malvy, D., Pizzorno, A., Terrier, O., Rosa Calatrava, M., Mentré, F., Smith, P., Perelson, A. S., & Guedj, J. (2020). Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. CPT: Pharmacometrics & Systems Pharmacology, n/a(n/a). doi: 10.1002/psp4.12543.

Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Huettenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., Kim, M., Haas, P., Polacco, B. J., Braberg, H., Fabius, J. M., Eckhardt, M., Soucheray, M., Bennett, M. J., Cakir, M., McGregor, M. J., Hauser, A., Counotte, M. J., Margossian, C. C., Konstantinoudis, G., Low, N., Althaus, C. L., & Riou, J. (2020). Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: a modelling study in Hubei, China and northern Italy. medRxiv. doi: 10.1101/2020.03.04.20031104.

He, X., Lau, E. H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y. C., Wong, J. Y., Guan, Y., Tan, X., et al. (2020). Temporal dynamics in viral shedding and transmissibility of covid-19. Nature medicine, pages 1-4.

46 references, page 1 of 4
Any information missing or wrong?Report an Issue