publication . Article . 2016

An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication

Mauthe, Mario; Langereis, Martijn; Jung, Jennifer; Zhou, Xingdong; Jones, Alex; Omta, Wienand; Tooze, Sharon A.; Stork, Björn; Paludan, Søren Riis; Ahola, Tero; ...
Open Access English
  • Published: 29 Aug 2016 Journal: Journal of Cell Biology, volume 214, issue 5, page 619 (issn: 0021-9525, Copyright policy)
  • Country: Netherlands
Abstract
Autophagy-related (ATG) proteins regulate autophagy, but recent work indicates that some also have autophagy-independent roles. Here, Mauthe et al. perform an unbiased siRNA screen to examine the effects of ATG protein depletion on viral replication and demonstrate autophagy-independent functions for ATG13 and FIP200 in the picornaviral life cycle.
Subjects
free text keywords: Journal Article, Cell Biology, Research Articles, Tools, 22, 26, EUKARYOTIC MESSENGER-RNA, SEMLIKI-FOREST-VIRUS, IN-VIVO, VIRAL REPLICATION, VACCINIA VIRUS, COXSACKIEVIRUS INFECTION, ENDOPLASMIC-RETICULUM, MAMMALIAN-CELLS, SELF-DIGESTION, MOUSE MODEL, Proteome, Autophagy, HEK 293 cells, RNA, Cell biology, Biology, Viral replication, Autophagy-related protein 13, Picornavirus, biology.organism_classification, Gene
Communities
  • COVID-19
  • Social Science and Humanities
Funded by
EC| XABA
Project
XABA
Xenophagy and bacterial avoidance
  • Funder: European Commission (EC)
  • Project Code: 282333
  • Funding stream: FP7 | SP2 | ERC
,
AKA| Mechanisms in the formation of membrane structures involved in virus replication
Project
  • Funder: Academy of Finland (AKA)
  • Project Code: 265997
,
WT
Project
  • Funder: Wellcome Trust (WT)
,
NWO| The role of autophagy in RNA virus infections
Project
  • Funder: Netherlands Organisation for Scientific Research (NWO) (NWO)
  • Project Code: 2300175628
,
NWO| Viral strategies to evade innate antiviral host responses
Project
  • Funder: Netherlands Organisation for Scientific Research (NWO) (NWO)
  • Project Code: 2300180032
97 references, page 1 of 7

Alirezaei, M., C.T. Flynn, M.R. Wood, and J.L. Whitton. 2012. Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in  vivo. Cell Host Microbe. 11:298-305. http://dx.doi.org /10.1016/j.chom.2012.01.014

Alirezaei, M., C.T.  Flynn, M.R.  Wood, S.  Harkins, and J.L.  Whitton. 2015. Coxsackievirus can exploit LC3 in both autophagy-dependent and -independent manners in vivo. Autophagy. 11:1389-1407. http://dx.doi .org/10.1080/15548627.2015.1063769

Anders, S., P.T. Pyl, and W. Huber. 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 31:166-169. http ://dx.doi.org/10.1093/bioinformatics/btu638

Axe, E.L., S.A. Walker, M. Manifava, P. Chandra, H.L. Roderick, A. Habermann, G.  Griffiths, and N.T.  Ktistakis. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J.  Cell Biol. 182:685-701. http://dx.doi.org/10.1083/jcb.200803137

Baker, J.M., and F.M. Boyce. 2014. High-throughput functional screening using a homemade dual-glow luciferase assay. J. Vis. Exp. 88:50282. http://dx .doi.org/10.3791/50282

Baron, M.H., and D. Baltimore. 1982. In vitro copying of viral positive strand RNA by poliovirus replicase. Characterization of the reaction and its products. J. Biol. Chem. 257:12359-12366.

Behrends, C., M.E.  Sowa, S.P.  Gygi, and J.W.  Harper. 2010. Network organization of the human autophagy system. Nature. 466:68-76. http:// dx.doi.org/10.1038/nature09204 [OpenAIRE]

Bestebroer, J., P. V'kovski, M. Mauthe, and F. Reggiori. 2013. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic. 14:1029- 1041. http://dx.doi.org/10.1111/tra.12091

Bible, J.M., P. Pantelidis, P.K. Chan, and C.Y. Tong. 2007. Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev. Med. Virol. 17:371-379. http://dx.doi.org/10.1002/rmv.538

Blommaart, E.F., U.  Krause, J.P.  Schellens, H.  Vreeling-Sindelárová, and A.J.  Meijer. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J.  Biochem. 243:240-246. http://dx.doi.org/10.1111/j.1432-1033 .1997.0240a.x

Buckingham, E.M., J.E.  Carpenter, W.  Jackson, L.  Zerboni, A.M.  Arvin, and C. Grose. 2015. Autophagic flux without a block differentiates varicellazoster virus infection from herpes simplex virus infection. Proc. Natl. Acad. Sci. USA. 112:256-261. http://dx.doi.org/10.1073/pnas .1417878112

Burkard, C., M.H.  Verheije, O.  Wicht, S.I.  van Kasteren, F.J.  van Kuppeveld, B.L.  Haagmans, L.  Pelkmans, P.J.  Rottier, B.J.  Bosch, and C.A.  de Haan. 2014. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 10:e1004502. (published erratum appears in PLoS Pathog. 2015. 11:e1004709) http:// dx.doi.org/10.1371/journal.ppat.1004502

Chakrabarti, A., P.K.  Ghosh, S.  Banerjee, C.  Gaughan, and R.H.  Silverman. 2012. RNase L triggers autophagy in response to viral infections. J. Virol. 86:11311-11321. http://dx.doi.org/10.1128/JVI.00270-12

Chan, E.Y., S.  Kir, and S.A.  Tooze. 2007. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282:25464-25474. http://dx.doi.org/10.1074/jbc.M703663200

Chen, S., C.  Wang, S.  Yeo, C.C.  Liang, T.  Okamoto, S.  Sun, J.  Wen, and J.L. Guan. 2016. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev. 30:856-869. http://dx.doi.org/10 .1101/gad.276428.115

97 references, page 1 of 7
Any information missing or wrong?Report an Issue