Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modélisation des risques en présence de valeurs extrêmes : Une approche Gini

Authors: Ouraga, Téa;

Modélisation des risques en présence de valeurs extrêmes : Une approche Gini

Abstract

Cette thèse propose une nouvelle approche du traitement des informations financières disponibles par des outils d'analyse des données robustes, à l'aide de l'indice de Gini. Elle vise à garder toute l'information disponible, même les évènements rares pour la modélisation des rendements et du risque. Une mauvaise appréciation du risque par l’agent fausse ses anticipations.La prise de décision relève de l’évaluation des risques et des prévisions que les agents sont capables de réaliser dans un futur immédiat. Le rendement anticipé de l’investissement par l’agent sera fonction de plusieurs sources de risques selon le modèle d’évaluation par arbitrage. Yitzhaki et Schechtman (2013) ont posé les bases d’une économétrie nouvelle basée sur l’indice de Gini. Ils proposent d’utiliser l’opérateur coGini plutôt que la covariance afin d’étudier des échantillons dont la loi de distribution sous-jacente peut être une loi de distribution autre que la loi normale.Cette thèse comporte deux apports principaux. Le premier porte sur les méthodes d’analyse des données traditionnelles : ACP, AFD et scoring. Ces méthodes sont adaptées aux valeurs extrêmes par l'utilisation de l'opérateur coGini (ou covariance au sens de gini) : ACP-Gini et AFD-Gini. Le second porte sur l’analyse du couple risques / rendements. Des applications sont faites en théorie financière notamment le pricing des actifs financiers par le modèle d’évaluation par arbitrage et l'analyse des performances des stratégies d'investissement. Au-delà de la finance, les outils développés dans cette thèse peuvent s'appliquer à toute évaluation de risque (risque climatique, risque de gouvernance, risque lié à l'évaluation d'évènements rares tels que les séismes, le coronavirus, etc.).

This thesis proposes a new approach to the treatment of available financial information by robust data analysis tools, using the Gini index. It aims at keeping all the information available, even rare events, for the modeling of returns and risk. A bad appreciation of risk by the agent distorts his expectations. Decision-making is based on the assessment of risks and forecasts that agents are able to make in the immediate future. The expected return on investment by the agent will depend on several sources of risk according to the arbitrage pricing theory. Yitzhaki and Schechtman (2013) have laid the foundations for a new econometrics based on the Gini index. They propose to use the coGini operator rather than the covariance to study samples whose underlying statistic distribution may be a statistic distribution different from the normal distribution.This thesis has two main contributions. The first deals with traditional data analysis methods : PCA, LDA and scoring. These methods are adapted to extreme values by using the coGini operator (or covariance in the Gini sense): Gini-PCA and Gini-LDA. The second concerns the analysis of the returns / risk couple. Applications are made in financial theory, in particular the pricing of financial assets by the arbitrage pricing theory and the performance analysis of investment strategies. Beyond finance, the tools developed in this thesis can be applied to any risk assessment (climate risk, governance risk, risk related to the evaluation of rare events such as earthquakes, coronavirus, etc.).

Country
France
Related Organizations
Keywords

Risk, Robustesse, Modélisation, Gini Index, Modeling, Indice de Gini, Statistiques multivariées, Robutsness, Risque, [SHS.ECO] Humanities and Social Sciences/Economics and Finance, [SHS.ECO]Humanities and Social Sciences/Economics and Finance, Multivariate statistics

21 references, page 1 of 3

Abramowitz, M. & I. Stegun. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series no. 55.

A. Baccini, P. Besse and A. de Falguerolles (1996), A L1 norm PCA and a heuristic approach, in Ordinal and Symbolic Data Analysis, E Didday, Y. Lechevalier and O. Opitz (eds), Springer, 359-368.

Banerjee, A.K. (2010), A multidimensional Gini index, Mathematical Social Sciences, 60, 87-93.

Calò, D.G. (2006), On a Transvariation Based Measure of Group Separability, Journal of Classification, 23(1), 143-167.

Carcea, M. & R. Serfling (2015), A Gini autocovariance function for time series modeling. Journal of Time Series Analysis 36, 817-38. [OpenAIRE]

Charpentier, A., Ka, N., Mussard, S. & Ndiaye, O. (2019), Gini regressions and heteroskedasticity. Econometrics, 7(1), 4, 1-16. [OpenAIRE]

Charpentier, A., Mussard, S. & Ouraga, T. (2019), Principal Componenet Analysis : A Generalized Gini Appraoch. Working paper # 2019-02 CHROME, University of nîmes, hal-02340386v1.

Dagum, C. (1997), A New Approach to the Decomposition of the Gini Income Inequality Ratio, Empirical Economics, 22, 515-531. [OpenAIRE]

Furman, E. & R. Zitikis (2017), Beyond the Pearson Correlation : HeavyTailed Risks, Weighted Gini Correlations, and A Gini-Type Weighted Insurance Pricing Model, ASTIn Bulletin : The Journal of the International Actuarial Association, 47(03), 919-942. [OpenAIRE]

Ka, N. & Mussard, S. (2016). `1 Regressions : Gini Estimators for Fixed Effects Panel Data. Journal of Applied Statistics, 43(8), 1436-1446.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
COVID-19
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.