Powered by OpenAIRE graph
Found an issue? Give us feedback


Towards Non Iridium High Entropy Material ElectroCATalysts for Oxygen Evolution Reaction in Acidic Media
Funder: European CommissionProject code: 101025516 Call for proposal: H2020-MSCA-IF-2020
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 171,473 EURFunder Contribution: 171,473 EUR
Open Access mandate
Research data: No

Proton-exchange-membrane water electrolyzers are one of the most promising technologies for hydrogen production. Eliminating rare and expensive iridium in current electrocatalysts for the oxygen-evolution reaction (OER) in acidic media would greatly advance this technology for application on a large scale. The objective of the HEMCAT project is to produce new, cost-effective and high-performance (active and stable) electrocatalysts and to eliminate the iridium in OER electrocatalysts. The materials of focus are high-entropy materials (HEMs) that will be prepared from high-entropy alloys (HEAs) with the anodic oxidation process. Starting HEAs will be selected, prepared in bulk form and subjected to anodic oxidation processes to synthesise high-entropy oxides (HEOs) in the form of high-surface-area nanostructured films on HEA substrates. HEOs will be converted to HEMs with various treatments and will be fully characterized in terms of stability, structure and morphology. Finally, they will be tested for electrocatalytic properties in the OER reaction with state-of-the-art characterization techniques. These will include investigations of electronic and structural properties of synthesized cutting-edge electrocatalysts using synchrotron techniques (X-ray Absorption Spectroscopy (XAS) and X-ray diffraction (XRD) measurements) under ex-situ, in-situ and operando conditions. HEMCAT addresses key issues in energy storage and conversion that is clean, compact, and ultimately low-cost and at the same time facilitates intra-European knowledge transfer along with direct societal impacts. The new efficient, stable and inexpensive electrocatalysts for the OER in acidic media will bridge the gap between fundamental and applied electrocatalysis and facilitate the development of advanced electrocatalysts for electrocatalytic applications.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
<script type="text/javascript">
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::10eea0c33cc09c387567f4b77a657ae8&type=result"></script>');
For further information contact us at helpdesk@openaire.eu

No option selected