Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NARCISarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Interaction between Nidovirales and Autophagy Components

Authors: Cong, Yingying; Verlhac, Pauline; Reggiori, Fulvio;

The Interaction between Nidovirales and Autophagy Components

Abstract

Autophagy is a conserved intracellular catabolic pathway that allows cells to maintain homeostasis through the degradation of deleterious components via specialized double-membrane vesicles called autophagosomes. During the past decades, it has been revealed that numerous pathogens, including viruses, usurp autophagy in order to promote their propagation. Nidovirales are an order of enveloped viruses with large single-stranded positive RNA genomes. Four virus families (Arterividae, Coronaviridae, Mesoniviridae, and Roniviridae) are part of this order, which comprises several human and animal pathogens of medical and veterinary importance. In host cells, Nidovirales induce membrane rearrangements including autophagosome formation. The relevance and putative mechanism of autophagy usurpation, however, remain largely elusive. Here, we review the current knowledge about the possible interplay between Nidovirales and autophagy.

Country
Netherlands
Keywords

replication, CORONAVIRUS REPLICATION COMPLEX, ronivirus, coronavirus, autophagosome, VIRAL REPLICATION, EQUINE ARTERITIS VIRUS, autophagic flux, RESPIRATORY-SYNDROME-VIRUS, ERAD REGULATORS, TRANSMISSIBLE GASTROENTERITIS VIRUS, infection, DOUBLE-MEMBRANE VESICLES, ENDOPLASMIC-RETICULUM STRESS, arterivirus, ATG PROTEINS, PRRSV INFECTION, egression, mesonivirus

97 references, page 1 of 10

1. Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the largest RNA virus genome. Virus Res. 2006, 117, 17-37. [CrossRef] [PubMed]

2. Revision of the taxonomy of the Coronavirus, Torovirus and Arterivirus genera. Arch Virol. 1994, 135, 227-237.

3. Lai, M.M.; Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 1997, 48, 1-100. [PubMed]

4. De Groot, R.J.; Baker, S.C.; Baric, R.; Enjuanes, L.; Gorbalenya, A.E.; Holmes, K.V.; Perlman, S.; Poon, L.; Rottier, P.J.M.; Talbot, P.J. Coronaviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier Academic Press: San Diego, CA, USA, 2012; pp. 774-796.

5. Pasternak, A.O.; Spaan, W.J.; Snijder, E.J. Nidovirus transcription: How to make sense...? J. Gen. Virol. 2006, 87, 1403-1421. [CrossRef] [PubMed]

6. Siddell, S.G. The Coronaviridae. In The Coronaviridae; Springer: New York, NY, USA, 1995; pp. 1-10.

7. McCluskey, B.J.; Haley, C.; Rovira, A.; Main, R.; Zhang, Y.; Barder, S. Retrospective testing and case series study of porcine delta coronavirus in US swine herds. Prev. Vet. Med. 2016, 123, 185-191. [CrossRef] [PubMed]

8. Cong, Y.; Ren, X. Coronavirus entry and release in polarized epithelial cells: A review. Rev. Med. Virol. 2014, 24, 308-315. [CrossRef] [PubMed]

9. De Vries, A.A.F.; Horzinek, M.C.; Rottier, P.J.M.; De Groot, R.J. The Genome Organization of the Nidovirales: Similarities and Differences Between Arteri-, Toro-, and Coronaviruses; Seminars in VIROLOGY; Elsevier: Lincoln, UK, 1997; pp. 33-47.

10. Cong, Y.; Zarlenga, D.S.; Richt, J.A.; Wang, X.; Wang, Y.; Suo, S.; Wang, J.; Ren, Y.; Ren, X. Evolution and homologous recombination of the hemagglutinin-esterase gene sequences from porcine torovirus. Virus Genes 2013, 47, 66-74. [CrossRef] [PubMed] [OpenAIRE]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average