search
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products

  • COVID-19
  • Publications
  • Research data
  • Research software
  • Other research products
  • Part of book or chapter of book
  • US
  • Hyper Article en Ligne
  • Hyper Article en Ligne - Sciences de l'Homme et de la Société

Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Britton, P.; Kottier, S.; Chen, C.M.; Pocock, D.H.; +2 Authors

    Previous studies on different transmissible gastroenteritis virus (TGEV) strains, including porcine respiratory coronavirus (PRCV), have identified regions within the genome that are polymorphic as regards insertions and deletions. For example the 672 base deletion within the S gene and multiple deletions 5’, within and 3’ of the ORF-3a gene were detected in strains of PRCV. The presence of deletions may be associated with a change in the virulence, attenuation or tissue tropism of the isolate. The Nouzilly (188-SG) TGEV vaccine strain was attenuated by passage of a cell culture adapted virulent isolate D-52 188 times through swine testis cells after treatment with gastric juice. PCR amplification with oligonucleotides, corresponding to known TGEV sequences, were used to analyse D-52 and 188-SG for genetic variation. Results with several pairs of oligonucleotides within the first 1565 nucleotides of the S gene did not identify a deletion within this region of the genome from either strain. However, oligonucleotides directed against the ORF-3a/3b region detected a deletion of about 250 nucleotides within the 188-SG genome but not in the D-52 genome. Since all the attenuated TGEV strains so far sequenced, PRCV, Miller SP and 188-SG, contained deletions within the ORF-3a/3b, it would suggest that this region of the TGEV genome is involved in regulating viral virulence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-1-...
    Part of book or chapter of book . 1994 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-1-...
      Part of book or chapter of book . 1994 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: SHIRISH, Anuragini;

    International audience; Given the crucial need to bridge the mental health service divide, the author examines the emerging trends in digital well-being management by focusing on the mobile health market. Using a bottom-up perspective and leveraging literature from positive technology and generalized unsafety theory of stress, the author conceptualizes how positive technology as a mobile health solution can help end users to respond effectively to different kinds of stressors during a crisis. It is further argued that the use of positive technology can positively reverse the automatic route to mental ill health that is plausible in the absence of safety perceptions. The chapter offers a theory-driven conceptualization of digital coping through positive technology. By showing how a simple, scalable, and sustainable positive technology design can cater to different user segments, the author urges policymakers, entrepreneurs, and healthcare service providers to participate in the design, propagation, adoption, and diffusion of such holistic positive technologies for fostering societal resilience.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ouabi, Othmane-Latif; Pomarede, Pascal; Geist, Matthieu; Declercq, Nico F.; +1 Authors

    In this work (This work is part of the BugWright2 project. This project is supported by the European Commission under grant agreement 871260 - BugWright2.), we propose a method based on a particle filter for the localization of an industrial robot on a large metal structure that leverages first-order reflections of acoustic waves on a metal plate edges. In our approach, the acoustic measurements are acquired in a (pseudo) pulse-echo mode using a co-localized emitter/receiver pair of piezoelectric transducers, and we assume a known size of the metal plate. To validate the method, the acquisition of acoustic data is made manually, but it is aimed to be performed by a robotic platform soon. The results demonstrate that with our approach, it is possible to recover the robot localization to a precision of a few millimeters.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2020
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://hal.archives-ouvertes....
    Part of book or chapter of book
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Springer Proceedings in Advanced Robotics
    Other literature type . Part of book or chapter of book . 2021 . Peer-reviewed
    License: Springer TDM
    Hal-Diderot
    Conference object . 2020
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne
      Other literature type . 2020
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://hal.archives-ouvertes....
      Part of book or chapter of book
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Springer Proceedings in Advanced Robotics
      Other literature type . Part of book or chapter of book . 2021 . Peer-reviewed
      License: Springer TDM
      Hal-Diderot
      Conference object . 2020
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
search
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Britton, P.; Kottier, S.; Chen, C.M.; Pocock, D.H.; +2 Authors

    Previous studies on different transmissible gastroenteritis virus (TGEV) strains, including porcine respiratory coronavirus (PRCV), have identified regions within the genome that are polymorphic as regards insertions and deletions. For example the 672 base deletion within the S gene and multiple deletions 5’, within and 3’ of the ORF-3a gene were detected in strains of PRCV. The presence of deletions may be associated with a change in the virulence, attenuation or tissue tropism of the isolate. The Nouzilly (188-SG) TGEV vaccine strain was attenuated by passage of a cell culture adapted virulent isolate D-52 188 times through swine testis cells after treatment with gastric juice. PCR amplification with oligonucleotides, corresponding to known TGEV sequences, were used to analyse D-52 and 188-SG for genetic variation. Results with several pairs of oligonucleotides within the first 1565 nucleotides of the S gene did not identify a deletion within this region of the genome from either strain. However, oligonucleotides directed against the ORF-3a/3b region detected a deletion of about 250 nucleotides within the 188-SG genome but not in the D-52 genome. Since all the attenuated TGEV strains so far sequenced, PRCV, Miller SP and 188-SG, contained deletions within the ORF-3a/3b, it would suggest that this region of the TGEV genome is involved in regulating viral virulence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-1-...
    Part of book or chapter of book . 1994 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-1-...
      Part of book or chapter of book . 1994 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: SHIRISH, Anuragini;

    International audience; Given the crucial need to bridge the mental health service divide, the author examines the emerging trends in digital well-being management by focusing on the mobile health market. Using a bottom-up perspective and leveraging literature from positive technology and generalized unsafety theory of stress, the author conceptualizes how positive technology as a mobile health solution can help end users to respond effectively to different kinds of stressors during a crisis. It is further argued that the use of positive technology can positively reverse the automatic route to mental ill health that is plausible in the absence of safety perceptions. The chapter offers a theory-driven conceptualization of digital coping through positive technology. By showing how a simple, scalable, and sustainable positive technology design can cater to different user segments, the author urges policymakers, entrepreneurs, and healthcare service providers to participate in the design, propagation, adoption, and diffusion of such holistic positive technologies for fostering societal resilience.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ouabi, Othmane-Latif; Pomarede, Pascal; Geist, Matthieu; Declercq, Nico F.; +1 Authors

    In this work (This work is part of the BugWright2 project. This project is supported by the European Commission under grant agreement 871260 - BugWright2.), we propose a method based on a particle filter for the localization of an industrial robot on a large metal structure that leverages first-order reflections of acoustic waves on a metal plate edges. In our approach, the acoustic measurements are acquired in a (pseudo) pulse-echo mode using a co-localized emitter/receiver pair of piezoelectric transducers, and we assume a known size of the metal plate. To validate the method, the acquisition of acoustic data is made manually, but it is aimed to be performed by a robotic platform soon. The results demonstrate that with our approach, it is possible to recover the robot localization to a precision of a few millimeters.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2020
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://hal.archives-ouvertes....
    Part of book or chapter of book
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Springer Proceedings in Advanced Robotics
    Other literature type . Part of book or chapter of book . 2021 . Peer-reviewed
    License: Springer TDM
    Hal-Diderot
    Conference object . 2020
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne
      Other literature type . 2020
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://hal.archives-ouvertes....
      Part of book or chapter of book
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Springer Proceedings in Advanced Robotics
      Other literature type . Part of book or chapter of book . 2021 . Peer-reviewed
      License: Springer TDM
      Hal-Diderot
      Conference object . 2020
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph