Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.

  • SDSN - Greece
  • Publications
  • Other literature type

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dirk Hengevoss; Victor Misev; Viktória Feigl; Ildikó Fekete-Kertész; +5 Authors

    Scandium (Sc) has various technological applications, but the concentrations of Sc in ores are low. Both, the mining of low concentrated Sc and the production of industrial-grade Sc are a heavy burden on the environment. Bauxite residue (BR) from alumina production represents one of the major sources of Sc in Europe (Ochsenkühn-Petropulu et al., 1994). The goal of this study is to assess the environmental impacts from cradle to gate of a novel production route developed in the Scandium Aluminium Europe project (SCALE) to extract Sc at concentrations <100 ppm from BR, to concentrate and upgrade it to pure ScF3 and Sc2O3 and ultimately to refine it to an aluminium scandium master alloy with 2 % Sc mass fraction (AlSc2 %). Results show that the global warming potential (GWP), measured in CO2-eq per kg Sc2O3, generated with the novel route is about half the GWP of the state-of-the-art Sc2O3 production from rare earth tailings when applying equal allocation principles. The initial process step to dissolve BR and extract Sc consumes elevated amounts of acid and energy and is responsible for at least 80 % of the route's total environmental impact. The amount of the generated filter cake (FC) is equal to the amount of the BR input and is a potential resource for cement clinker production. The ecotoxicological study indicates that both FC and BR are slightly ecotoxic.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Other literature type . 2024
    License: CC BY
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cleaner Waste Systems
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Other literature type . 2024
      License: CC BY
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cleaner Waste Systems
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Toine FH. Bovee; Harm J. Heusinkveld; Sophie Dodd; Ad Peijnenburg; +8 Authors

    International audience; Background: Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA).Objective: The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation.Methods: Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol.Results: Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Other literature type . 2024
    License: CC BY
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Food and Chemical Toxicology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    HAL Descartes
    Article . 2024
    License: CC BY
    Data sources: HAL Descartes
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Other literature type . 2024
      License: CC BY
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Food and Chemical Toxicology
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      HAL Descartes
      Article . 2024
      License: CC BY
      Data sources: HAL Descartes
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Greco-Coppi, Martin; Dinkova, Anna; Hofmann, Carina; Walter, Diethelm; +3 Authors

    Lime is crucial for many sectors of the economy including construction, agriculture, power generation, and manufacture. Lime plants are responsible of about 1.4 % of the global anthropogenic emissions of CO2. The majority of these emissions (over 60 %, according to IEA 2020), generated by the calcination of CaCO3 (i.e. process emissions), can only be avoided through efficient CO2 capture. To capture the CO2 process emissions, post-combustion and oxy-fuel combustion technologies have the potential to be deployed industrially. Among them, Carbonate Looping (CaL) is one of the most promising processes because of its competitive CO2 avoidance costs and low energy requirements (i.e. specific primary energy consumption per CO2 avoided, SPECCA) (e.g. Astolfi et al. 2019). It uses CaO as sorbent to bind CO2 in a carbonator. The CO2 is released in an oxy-fired calciner, operating at around 900 °C, exiting in a high purity stream. For the particular case of the cement and lime industry, the CaL process can exploit the synergies of the calcination; thus, increasing the overall economic and thermodynamic efficiency. To avoid the manifold penalties associated with oxy-firing the calciner (e.g. capital and operation cost of an air separation unit, contamination of CO2 stream, and increase in SPECCA), the heat can be provided indirectly through an external combustor. A proven way to do this is via heat pipes, which transfer heat by means of evaporation and condensation of a working fluid, e.g. sodium. The viability of this Indirectly Heated Carbonate Looping (IHCaL) process was demonstrated with more than 1000 hours of operation in a 300 kWth pilot facility at the Technical University of Darmstadt, Germany. Some of the most important milestones were: capturing CO2 from real combustion flue gas, with more than 85 % capture rate in the carbonator; recirculation of combustor flue gases into the carbonator; and fuelling of the combustor with propane, coal, and solid recovered fuel (SRF) (Hofmann et al. 2022; Reitz et al. 2016). Nevertheless, still some key elements have to be demonstrated in order to deploy the IHCaL technology into the industrial scale (cf. Greco-Coppi et al. 2021). This work presents the design of a 2 MWth demonstration facility with the main objective of driving the IHCaL forward into the full-scale application for the decarbonization of lime and cement production. Lime Plant Hönnetal, in Germany, was selected as the host facility. For the design of the demonstration plant, reactor and process simulations were performed. The sorbent reaction and deactivation models were developed using data from thermogravimetric analysis (TGA). The reactor models were validated with the results from the pilot testing in the 300 kWth scale. These models were integrated in the Aspen PlusTM process models and used to optimize the design of the demonstration facility. The objectives of the demonstration plant are: (i) demonstrate the application of the IHCaL into an industrially relevant environment; (ii) optimize and validate the utilization of solid fuels (including SRF) in the combustor with capture rates higher than 90 %; (iii) deploy a solid/solid heat exchanger to recover heat between the solid circulating streams; and (iv) demonstrate the feasibility to operate the indirectly heated calciner in industrially-relevant conditions (CO2 recirculation and steam fluidization). Within this work, the methods for the scale-up will be discussed, the design of the plant will be presented, and the operating conditions will be reported. The construction of the demonstration plant may take place within a follow-up project to the ACT ANICA project, starting in the year 2024. In that case, the demonstration facility would be operative by 2026; thus, enabling a first IHCaL industrial application into a lime or cement plant by 2030.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ tuprintsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.26083/tupri...
    Other literature type . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ tuprintsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.26083/tupri...
      Other literature type . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Politikos, Dimitrios; Huret, Martin; Petitgas, Pierre;

    No abstracts are to be cited without prior reference to the author. Modelling of fish movement behaviour within a heterogeneous marine environment is a challenging but also key issue for understanding the effect of environmental factors and climatic change on fish processes (growth, distribution, mortality, reproduction). Fish movement models have the capability to encompass the combined effect of environment and empirical knowledge of fish individuals as energy requirements, known preys and predators, swimming capacities into a unified framework (Planque et al., 2011). Following an Individual Based Model (IBM) approach, a fish movement model has been developed to simulate the active movement of adult anchovy in the Bay of Biscay (BoB) in response to the spatio-temporal variations of both biotic and abiotic factors, as well as its internal conditions based on a bioenergetics model

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Baulier, Loïc; Pawlowski, Lionel; Lorance, Pascal; Trenkel, Verena M.;

    No abstracts are to be cited without prior reference to the author.Deep-sea fisheries in the West of the British Isles have experienced in only two decades many changes regarding the size of the fleets, engine power and fishing gears, fishing grounds and depth while signs of depletion of deep-water stocks and damages to the seabed have led to an increasing number of management rules aiming at ecosystem conservation and at protecting stocks from unsustainable fishing pressure. As deep-water scientific surveys are scarce, abundance indices have been lately estimated using a database containing the catch composition of 29 000 hauls and provided by two organizations from the French fishing industry through a science–industry partnership. Catch composition reflects the combination of the influence of the above factors and the “true” species distribution, itself depending on environmental factors varying in space and time. It is therefore impossible to treat haul-by-haul datasets by standard analyses as they generally require independent observations and normal distributions of continuous variables. Various multivariate analyses and clustering methods were applied in an attempt to characterize the spatio-temporal variability in species abundance and to identify structuring factors and species associations in the catches. Two temporal scales were considered: seasonal and interannual. The relevance of the different methods employed and the information they provide were discussed and results were analysed with stock assessment and management options for those mixed fisheries in perspective.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lorance, Pascal; Pawlowski, Lionel; Trenkel, Verena;

    No abstracts are to be cited without prior reference to the author.A database of tallybooks, from skippers' own logbooks, provided by the French industry involved in deep-water fishing to the west of the British Isles was used to standardise blue ling Landings per Unit of Effort (LPUEs). The data covered the years 1992-2008 with more extensive data for the period 2000-2007. For each haul, landings by species, tow duration, depth and location were reported. Compared to EU logbooks, this database is on a haul by haul basis instead of being aggregated by fishing sub-trips combining hauls from the same day, ICES rectangle and gear. Moreover, it includes depth, which is a major factor for catch rates in deepwater fisheries. LPUEs were estimated from Generalised Additive Models (GAMs) with depth, vessel, statistical rectangle and zone by year as explanatory variables. Owing to the statistical distribution of landings rates, landings were modelled by a Tweedie distribution, which is a compound Poisson distribution and allows to handle data with many zeros, as it is typical for catch data. In order to investigate how to reliably track stock trends, LPUEs were estimated in five regions for different subsets including or not the spawning season, when blue ling aggregates, or considering tows where blue ling was only a bycatch. The results based on the tallybook data indicated that blue ling LPUEs have been mainly stable over the past decade. This is consistent with stable mean length in the landings. Haul by haul data are suitable to derive abundance indices for deep-water fisheries assessment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gustin, Mae Sexauer; Dunham-Cheatham, Sarrah; Allen, Natalie; Choma, Nicole; +7 Authors

    The Hg research community needs methods to more accurately measure atmospheric Hg concentrations and chemistry. The Reactive Mercury Active System (RMAS) uses cation exchange, nylon, and PTFE membranes to determine reactive mercury (RM), gaseous oxidized mercury, and particulate-bound mercury (PBM) concentrations and chemistry, respectively. New data for Atlanta, Georgia (NRGT) demonstrated that particulate-bound Hg was dominant and the chemistry was primarily N and S HgII compounds. At Great Salt Lake, Utah (GSL), RM was predominately PBM, with NS > organics > halogen > O HgII compounds. At Guadalupe Mountains National Park, Texas (GUMO), halogenated compound concentrations were lowest when air interacting with the site was primarily derived from the Midwest, and highest when the air was sourced from Mexico. At Amsterdam Island, Southern Indian Ocean, compounds were primarily halogenated with some N, S, and organic HgII compounds potentially associated with biological activity. The GEOS-Chem model was applied to see if it predicted measurements at five field sites. Model values were higher than observations at GSL, slightly lower at NRGT, and observations were an order of magnitude higher than modeled values for GUMO and Reno, Nevada. In general, data collected from 13 locations indicated that N, S, and organic RM compounds were associated with city and forest locations, halogenated compounds were sourced from the marine boundary layer, and O compounds were associated with long-range transport. Data being developed currently, and in the past, suggest there are multiple forms of RM that modelers must consider, and PBM is an important component of RM.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Luna M. van der Loos; Quinten Bafort; Samuel Bosch; Enric Ballesteros; +40 Authors

    Effective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area. European Marine Biological Resource Centre Belgium [GOH3817N]; European Marine Biological Resource Centre Belgium [I001621N]; Fonds Wetenschappelijk Onderzoek [3F020119]; POR PUGLIA FESR-FSE 2014/2020 [Asse VI, Action 6.5]; RESTORESEAS [EU-BiodivERsA BiodivRestore-253]; Institut des Sciences de l’Évolution – Montpellier [ISEM 2023-173]; Italian National Recovery and Resilience Plan [Mission 4, Component 2, ‘From research to business’: 1. NBFC, Investment 1.4, Project CN00000033]; IDEALG [ANR-10-BTBR-04; Institut des Sciences de l’Évolution – Montpellier Institut des Sciences de l’Évolution – Montpellier [ISEM 2023-173]. info:eu-repo/semantics/publishedVersion

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    European Journal of Phycology
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      European Journal of Phycology
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Olivier Magand; Hélène Angot; Yann Bertrand; Jeroen E. Sonke; +5 Authors

    AbstractThe Minamata Convention, a global and legally binding treaty that entered into force in 2017, aims to protect human health and the environment from harmful mercury (Hg) effects by reducing anthropogenic Hg emissions and environmental levels. The Conference of the Parties is to periodically evaluate the Convention’s effectiveness, starting in 2023, using existing monitoring data and observed trends. Monitoring atmospheric Hg levels has been proposed as a key indicator. However, data gaps exist, especially in the Southern Hemisphere. Here, we present over a decade of atmospheric Hg monitoring data at Amsterdam Island (37.80°S, 77.55°E), in the remote southern Indian Ocean. Datasets include gaseous elemental and oxidised Hg species ambient air concentrations from either active/continuous or passive/discrete acquisition methods, and annual total Hg wet deposition fluxes. These datasets are made available to the community to support policy-making and further scientific advancements.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Dataarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Data
    Article . 2023
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Data
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    DOAJ
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Dataarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Data
      Article . 2023
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Data
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      DOAJ
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Metzger, Marc J; Keller, Rose; Lo, Veronica; Filyushkina, Anna; +4 Authors

    Forest biodiversity studies conduct Visions help to understand common ground and tensions among citizens and stakeholders, supporting inclusive land management and conservation solutions to the climate emergency and biodiversity crisis. With careful design and sufficient resource, it is possible to bring together communities and other stakeholders to share perspectives and deliberate desired futures, identifying more acceptable alternatives and avoiding costly delays. We evaluated researcher and participant experiences of illustration-based interviews to understand land management visions using four studies in Scotland, The Netherlands and Spain. These studies used STREAMLINE, a visual mixed-method interview format using thematic illustrated canvases designed to provide an inclusive and creative framing for participants to contemplate their desired future. Participants enjoyed the informal visual format, which reduced pressure, increased comfort through the research process, and helped their thinking and reflection about complex topics. They also valued being listened to and having the opportunity to share their views. Researchers appreciated the ability to triangulate rich qualitative data with a variety of quantitative measure through the mixed-method format and the flexibility to adapt the canvases to suit their research aims. Positive participant experience made facilitation easier and was stimulating for the researchers. The credibility and legitimacy of illustration-based interviews will ultimately depend on specific research design-decisions and testing, which can make the approach more resource intensive than conventional interviews. While organisal barriers should be considered realistically, illustration-based interviews can have high saliency by providing useful and usable insights that strengthen land management policy and planning. Inclusive Conservation Participatory planning Governance Visions Visual methods Participatory methods d across Europe use a multitude of forestry terms, often inconsistently. This hinders the comparability across studies and makes the assessment of the impacts of forest management on biodiversity highly context-dependent. Recent attempts to standardize forestry and stand description terminology mostly used a top-down approach that did not account for the perspectives and approaches of forest biodiversity experts. This work aims to establish common standards for silvicultural and vegetation definitions, creating a shared conceptual framework for a consistent study on the effects of forest management on biodiversity. We have identified both strengths and weaknesses of the silvicultural and vegetation information provided in forest biodiversity studies. While quantitative data on forest biomass and dominant tree species are frequently included, information on silvicultural activities and vegetation composition is often lacking, shallow, or based on broad and heterogeneous classifications. We discuss the existing classifications and their use in European forest biodiversity studies through a novel bottom-up and top-driven review process, and ultimately propose a common framework. This will enhance the comparability of forest biodiversity studies in Europe, and puts the basis for effective implementation and monitoring of sustainable forest management policies. The standards here proposed are potentially adaptable and applicable to other geographical areas and could be extended to other forest interventions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Landscape and Urban ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NINA Brage
    Article . 2023
    Data sources: NINA Brage
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Zurich Open Repository and Archive
    Other literature type . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Landscape and Urban Planning
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Landscape and Urban ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NINA Brage
      Article . 2023
      Data sources: NINA Brage
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Zurich Open Repository and Archive
      Other literature type . 2023
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Landscape and Urban Planning
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dirk Hengevoss; Victor Misev; Viktória Feigl; Ildikó Fekete-Kertész; +5 Authors

    Scandium (Sc) has various technological applications, but the concentrations of Sc in ores are low. Both, the mining of low concentrated Sc and the production of industrial-grade Sc are a heavy burden on the environment. Bauxite residue (BR) from alumina production represents one of the major sources of Sc in Europe (Ochsenkühn-Petropulu et al., 1994). The goal of this study is to assess the environmental impacts from cradle to gate of a novel production route developed in the Scandium Aluminium Europe project (SCALE) to extract Sc at concentrations <100 ppm from BR, to concentrate and upgrade it to pure ScF3 and Sc2O3 and ultimately to refine it to an aluminium scandium master alloy with 2 % Sc mass fraction (AlSc2 %). Results show that the global warming potential (GWP), measured in CO2-eq per kg Sc2O3, generated with the novel route is about half the GWP of the state-of-the-art Sc2O3 production from rare earth tailings when applying equal allocation principles. The initial process step to dissolve BR and extract Sc consumes elevated amounts of acid and energy and is responsible for at least 80 % of the route's total environmental impact. The amount of the generated filter cake (FC) is equal to the amount of the BR input and is a potential resource for cement clinker production. The ecotoxicological study indicates that both FC and BR are slightly ecotoxic.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Other literature type . 2024
    License: CC BY
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cleaner Waste Systems
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Other literature type . 2024
      License: CC BY
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cleaner Waste Systems
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Toine FH. Bovee; Harm J. Heusinkveld; Sophie Dodd; Ad Peijnenburg; +8 Authors

    International audience; Background: Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA).Objective: The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation.Methods: Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol.Results: Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Other literature type . 2024
    License: CC BY
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Food and Chemical Toxicology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    HAL Descartes
    Article . 2024
    License: CC BY
    Data sources: HAL Descartes
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Other literature type . 2024
      License: CC BY
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Food and Chemical Toxicology
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      HAL Descartes
      Article . 2024
      License: CC BY
      Data sources: HAL Descartes
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Greco-Coppi, Martin; Dinkova, Anna; Hofmann, Carina; Walter, Diethelm; +3 Authors

    Lime is crucial for many sectors of the economy including construction, agriculture, power generation, and manufacture. Lime plants are responsible of about 1.4 % of the global anthropogenic emissions of CO2. The majority of these emissions (over 60 %, according to IEA 2020), generated by the calcination of CaCO3 (i.e. process emissions), can only be avoided through efficient CO2 capture. To capture the CO2 process emissions, post-combustion and oxy-fuel combustion technologies have the potential to be deployed industrially. Among them, Carbonate Looping (CaL) is one of the most promising processes because of its competitive CO2 avoidance costs and low energy requirements (i.e. specific primary energy consumption per CO2 avoided, SPECCA) (e.g. Astolfi et al. 2019). It uses CaO as sorbent to bind CO2 in a carbonator. The CO2 is released in an oxy-fired calciner, operating at around 900 °C, exiting in a high purity stream. For the particular case of the cement and lime industry, the CaL process can exploit the synergies of the calcination; thus, increasing the overall economic and thermodynamic efficiency. To avoid the manifold penalties associated with oxy-firing the calciner (e.g. capital and operation cost of an air separation unit, contamination of CO2 stream, and increase in SPECCA), the heat can be provided indirectly through an external combustor. A proven way to do this is via heat pipes, which transfer heat by means of evaporation and condensation of a working fluid, e.g. sodium. The viability of this Indirectly Heated Carbonate Looping (IHCaL) process was demonstrated with more than 1000 hours of operation in a 300 kWth pilot facility at the Technical University of Darmstadt, Germany. Some of the most important milestones were: capturing CO2 from real combustion flue gas, with more than 85 % capture rate in the carbonator; recirculation of combustor flue gases into the carbonator; and fuelling of the combustor with propane, coal, and solid recovered fuel (SRF) (Hofmann et al. 2022; Reitz et al. 2016). Nevertheless, still some key elements have to be demonstrated in order to deploy the IHCaL technology into the industrial scale (cf. Greco-Coppi et al. 2021). This work presents the design of a 2 MWth demonstration facility with the main objective of driving the IHCaL forward into the full-scale application for the decarbonization of lime and cement production. Lime Plant Hönnetal, in Germany, was selected as the host facility. For the design of the demonstration plant, reactor and process simulations were performed. The sorbent reaction and deactivation models were developed using data from thermogravimetric analysis (TGA). The reactor models were validated with the results from the pilot testing in the 300 kWth scale. These models were integrated in the Aspen PlusTM process models and used to optimize the design of the demonstration facility. The objectives of the demonstration plant are: (i) demonstrate the application of the IHCaL into an industrially relevant environment; (ii) optimize and validate the utilization of solid fuels (including SRF) in the combustor with capture rates higher than 90 %; (iii) deploy a solid/solid heat exchanger to recover heat between the solid circulating streams; and (iv) demonstrate the feasibility to operate the indirectly heated calciner in industrially-relevant conditions (CO2 recirculation and steam fluidization). Within this work, the methods for the scale-up will be discussed, the design of the plant will be presented, and the operating conditions will be reported. The construction of the demonstration plant may take place within a follow-up project to the ACT ANICA project, starting in the year 2024. In that case, the demonstration facility would be operative by 2026; thus, enabling a first IHCaL industrial application into a lime or cement plant by 2030.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ tuprintsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.26083/tupri...
    Other literature type . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ tuprintsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.26083/tupri...
      Other literature type . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Politikos, Dimitrios; Huret, Martin; Petitgas, Pierre;

    No abstracts are to be cited without prior reference to the author. Modelling of fish movement behaviour within a heterogeneous marine environment is a challenging but also key issue for understanding the effect of environmental factors and climatic change on fish processes (growth, distribution, mortality, reproduction). Fish movement models have the capability to encompass the combined effect of environment and empirical knowledge of fish individuals as energy requirements, known preys and predators, swimming capacities into a unified framework (Planque et al., 2011). Following an Individual Based Model (IBM) approach, a fish movement model has been developed to simulate the active movement of adult anchovy in the Bay of Biscay (BoB) in response to the spatio-temporal variations of both biotic and abiotic factors, as well as its internal conditions based on a bioenergetics model

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Baulier, Loïc; Pawlowski, Lionel; Lorance, Pascal; Trenkel, Verena M.;

    No abstracts are to be cited without prior reference to the author.Deep-sea fisheries in the West of the British Isles have experienced in only two decades many changes regarding the size of the fleets, engine power and fishing gears, fishing grounds and depth while signs of depletion of deep-water stocks and damages to the seabed have led to an increasing number of management rules aiming at ecosystem conservation and at protecting stocks from unsustainable fishing pressure. As deep-water scientific surveys are scarce, abundance indices have been lately estimated using a database containing the catch composition of 29 000 hauls and provided by two organizations from the French fishing industry through a science–industry partnership. Catch composition reflects the combination of the influence of the above factors and the “true” species distribution, itself depending on environmental factors varying in space and time. It is therefore impossible to treat haul-by-haul datasets by standard analyses as they generally require independent observations and normal distributions of continuous variables. Various multivariate analyses and clustering methods were applied in an attempt to characterize the spatio-temporal variability in species abundance and to identify structuring factors and species associations in the catches. Two temporal scales were considered: seasonal and interannual. The relevance of the different methods employed and the information they provide were discussed and results were analysed with stock assessment and management options for those mixed fisheries in perspective.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lorance, Pascal; Pawlowski, Lionel; Trenkel, Verena;

    No abstracts are to be cited without prior reference to the author.A database of tallybooks, from skippers' own logbooks, provided by the French industry involved in deep-water fishing to the west of the British Isles was used to standardise blue ling Landings per Unit of Effort (LPUEs). The data covered the years 1992-2008 with more extensive data for the period 2000-2007. For each haul, landings by species, tow duration, depth and location were reported. Compared to EU logbooks, this database is on a haul by haul basis instead of being aggregated by fishing sub-trips combining hauls from the same day, ICES rectangle and gear. Moreover, it includes depth, which is a major factor for catch rates in deepwater fisheries. LPUEs were estimated from Generalised Additive Models (GAMs) with depth, vessel, statistical rectangle and zone by year as explanatory variables. Owing to the statistical distribution of landings rates, landings were modelled by a Tweedie distribution, which is a compound Poisson distribution and allows to handle data with many zeros, as it is typical for catch data. In order to investigate how to reliably track stock trends, LPUEs were estimated in five regions for different subsets including or not the spawning season, when blue ling aggregates, or considering tows where blue ling was only a bycatch. The results based on the tallybook data indicated that blue ling LPUEs have been mainly stable over the past decade. This is consistent with stable mean length in the landings. Haul by haul data are suitable to derive abundance indices for deep-water fisheries assessment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    https://doi.org/10.17895/ices....
    Conference object . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      https://doi.org/10.17895/ices....
      Conference object . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gustin, Mae Sexauer; Dunham-Cheatham, Sarrah; Allen, Natalie; Choma, Nicole; +7 Authors

    The Hg research community needs methods to more accurately measure atmospheric Hg concentrations and chemistry. The Reactive Mercury Active System (RMAS) uses cation exchange, nylon, and PTFE membranes to determine reactive mercury (RM), gaseous oxidized mercury, and particulate-bound mercury (PBM) concentrations and chemistry, respectively. New data for Atlanta, Georgia (NRGT) demonstrated that particulate-bound Hg was dominant and the chemistry was primarily N and S HgII compounds. At Great Salt Lake, Utah (GSL), RM was predominately PBM, with NS > organics > halogen > O HgII compounds. At Guadalupe Mountains National Park, Texas (GUMO), halogenated compound concentrations were lowest when air interacting with the site was primarily derived from the Midwest, and highest when the air was sourced from Mexico. At Amsterdam Island, Southern Indian Ocean, compounds were primarily halogenated with some N, S, and organic HgII compounds potentially associated with biological activity. The GEOS-Chem model was applied to see if it predicted measurements at five field sites. Model values were higher than observations at GSL, slightly lower at NRGT, and observations were an order of magnitude higher than modeled values for GUMO and Reno, Nevada. In general, data collected from 13 locations indicated that N, S, and organic RM compounds were associated with city and forest locations, halogenated compounds were sourced from the marine boundary layer, and O compounds were associated with long-range transport. Data being developed currently, and in the past, suggest there are multiple forms of RM that modelers must consider, and PBM is an important component of RM.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Luna M. van der Loos; Quinten Bafort; Samuel Bosch; Enric Ballesteros; +40 Authors

    Effective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area. European Marine Biological Resource Centre Belgium [GOH3817N]; European Marine Biological Resource Centre Belgium [I001621N]; Fonds Wetenschappelijk Onderzoek [3F020119]; POR PUGLIA FESR-FSE 2014/2020 [Asse VI, Action 6.5]; RESTORESEAS [EU-BiodivERsA BiodivRestore-253]; Institut des Sciences de l’Évolution – Montpellier [ISEM 2023-173]; Italian National Recovery and Resilience Plan [Mission 4, Component 2, ‘From research to business’: 1. NBFC, Investment 1.4, Project CN00000033]; IDEALG [ANR-10-BTBR-04; Institut des Sciences de l’Évolution – Montpellier Institut des Sciences de l’Évolution – Montpellier [ISEM 2023-173]. info:eu-repo/semantics/publishedVersion

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    European Journal of Phycology
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      European Journal of Phycology
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Olivier Magand; Hélène Angot; Yann Bertrand; Jeroen E. Sonke; +5 Authors

    AbstractThe Minamata Convention, a global and legally binding treaty that entered into force in 2017, aims to protect human health and the environment from harmful mercury (Hg) effects by reducing anthropogenic Hg emissions and environmental levels. The Conference of the Parties is to periodically evaluate the Convention’s effectiveness, starting in 2023, using existing monitoring data and observed trends. Monitoring atmospheric Hg levels has been proposed as a key indicator. However, data gaps exist, especially in the Southern Hemisphere. Here, we present over a decade of atmospheric Hg monitoring data at Amsterdam Island (37.80°S, 77.55°E), in the remote southern Indian Ocean. Datasets include gaseous elemental and oxidised Hg species ambient air concentrations from either active/continuous or passive/discrete acquisition methods, and annual total Hg wet deposition fluxes. These datasets are made available to the community to support policy-making and further scientific advancements.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Dataarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Data
    Article . 2023
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Data
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    DOAJ
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Dataarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Data
      Article . 2023
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Data
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      DOAJ
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Metzger, Marc J; Keller, Rose; Lo, Veronica; Filyushkina, Anna; +4 Authors

    Forest biodiversity studies conduct Visions help to understand common ground and tensions among citizens and stakeholders, supporting inclusive land management and conservation solutions to the climate emergency and biodiversity crisis. With careful design and sufficient resource, it is possible to bring together communities and other stakeholders to share perspectives and deliberate desired futures, identifying more acceptable alternatives and avoiding costly delays. We evaluated researcher and participant experiences of illustration-based interviews to understand land management visions using four studies in Scotland, The Netherlands and Spain. These studies used STREAMLINE, a visual mixed-method interview format using thematic illustrated canvases designed to provide an inclusive and creative framing for participants to contemplate their desired future. Participants enjoyed the informal visual format, which reduced pressure, increased comfort through the research process, and helped their thinking and reflection about complex topics. They also valued being listened to and having the opportunity to share their views. Researchers appreciated the ability to triangulate rich qualitative data with a variety of quantitative measure through the mixed-method format and the flexibility to adapt the canvases to suit their research aims. Positive participant experience made facilitation easier and was stimulating for the researchers. The credibility and legitimacy of illustration-based interviews will ultimately depend on specific research design-decisions and testing, which can make the approach more resource intensive than conventional interviews. While organisal barriers should be considered realistically, illustration-based interviews can have high saliency by providing useful and usable insights that strengthen land management policy and planning. Inclusive Conservation Participatory planning Governance Visions Visual methods Participatory methods d across Europe use a multitude of forestry terms, often inconsistently. This hinders the comparability across studies and makes the assessment of the impacts of forest management on biodiversity highly context-dependent. Recent attempts to standardize forestry and stand description terminology mostly used a top-down approach that did not account for the perspectives and approaches of forest biodiversity experts. This work aims to establish common standards for silvicultural and vegetation definitions, creating a shared conceptual framework for a consistent study on the effects of forest management on biodiversity. We have identified both strengths and weaknesses of the silvicultural and vegetation information provided in forest biodiversity studies. While quantitative data on forest biomass and dominant tree species are frequently included, information on silvicultural activities and vegetation composition is often lacking, shallow, or based on broad and heterogeneous classifications. We discuss the existing classifications and their use in European forest biodiversity studies through a novel bottom-up and top-driven review process, and ultimately propose a common framework. This will enhance the comparability of forest biodiversity studies in Europe, and puts the basis for effective implementation and monitoring of sustainable forest management policies. The standards here proposed are potentially adaptable and applicable to other geographical areas and could be extended to other forest interventions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Landscape and Urban ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NINA Brage
    Article . 2023
    Data sources: NINA Brage
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Zurich Open Repository and Archive
    Other literature type . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Landscape and Urban Planning
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Landscape and Urban ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NINA Brage
      Article . 2023
      Data sources: NINA Brage
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Zurich Open Repository and Archive
      Other literature type . 2023
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Landscape and Urban Planning
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.