Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products, page 1 of 1

  • COVID-19
  • Research data
  • Other research products
  • 2013-2022
  • Open Access
  • Lecture
  • LU
  • English
  • Open Repository and Bibliography - Luxembourg
  • COVID-19

Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Sölter, Jan; Proverbio, Daniele; Baniasadi, Mehri; Bossa, Matias Nicolas; Vlasov, Vanja; Garcia Santa Cruz, Beatriz; Husch, Andreas;
    Country: Luxembourg

    Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing state-of-the-art convolution neural network frameworks based on the U-Net architecture, namely nnU-Net [3], and focused on leveraging the available training data. We did not apply any pre-training nor modi ed the network architecture. First, we enriched training information by generating two additional labels for lung and body area. Lung labels were created with a public available lung segmentation network and weak body labels were generated by thresholding. Subsequently, we trained three di erent multi-class networks: 2-label (original background and lesion labels), 3-label (additional lung label) and 4-label (additional lung and body label). The 3-label obtained the best single network performance in internal cross-validation (Dice-Score 0.756) and on the leaderboard (Dice- Score 0.755, Haussdor 95-Score 57.5). To improve robustness, we created a weighted ensemble of all three models, with calibrated weights to optimise the ranking in Dice-Score. This ensemble achieved a slight performance gain in internal cross-validation (Dice-Score 0.760). On the validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdor 95- Score to 54.8. It ranked 3rd in phase I according to mean Dice-Score. Adding unlabelled data from the public TCIA dataset in a student-teacher manner signi cantly improved our internal validation score (Dice-Score of 0.770). However, we noticed partial overlap between our additional training data (although not human-labelled) and nal test data and therefore submitted the ensemble without additional data, to yield realistic assessments.

Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products, page 1 of 1
  • Open Access English
    Authors: 
    Sölter, Jan; Proverbio, Daniele; Baniasadi, Mehri; Bossa, Matias Nicolas; Vlasov, Vanja; Garcia Santa Cruz, Beatriz; Husch, Andreas;
    Country: Luxembourg

    Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing state-of-the-art convolution neural network frameworks based on the U-Net architecture, namely nnU-Net [3], and focused on leveraging the available training data. We did not apply any pre-training nor modi ed the network architecture. First, we enriched training information by generating two additional labels for lung and body area. Lung labels were created with a public available lung segmentation network and weak body labels were generated by thresholding. Subsequently, we trained three di erent multi-class networks: 2-label (original background and lesion labels), 3-label (additional lung label) and 4-label (additional lung and body label). The 3-label obtained the best single network performance in internal cross-validation (Dice-Score 0.756) and on the leaderboard (Dice- Score 0.755, Haussdor 95-Score 57.5). To improve robustness, we created a weighted ensemble of all three models, with calibrated weights to optimise the ranking in Dice-Score. This ensemble achieved a slight performance gain in internal cross-validation (Dice-Score 0.760). On the validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdor 95- Score to 54.8. It ranked 3rd in phase I according to mean Dice-Score. Adding unlabelled data from the public TCIA dataset in a student-teacher manner signi cantly improved our internal validation score (Dice-Score of 0.770). However, we noticed partial overlap between our additional training data (although not human-labelled) and nal test data and therefore submitted the ensemble without additional data, to yield realistic assessments.

Powered by OpenAIRE graph