- home
- Advanced Search
4 Research products, page 1 of 1
Loading
- Publication . Article . 2021Open Access EnglishAuthors:Jean-Baptiste Bouillon-Minois; Vincent Roux; Matthieu Jabaudon; Mara Flannery; Jonathan Duchenne; Maxime Dumesnil; Morgane Paillard-Turenne; Paul-Henri Gendre; Kévin Grapin; Benjamin Rieu; +4 moreJean-Baptiste Bouillon-Minois; Vincent Roux; Matthieu Jabaudon; Mara Flannery; Jonathan Duchenne; Maxime Dumesnil; Morgane Paillard-Turenne; Paul-Henri Gendre; Kévin Grapin; Benjamin Rieu; Frédéric Dutheil; Carolyne Croizier; Jeannot Schmidt; Bruno Pereira;
doi: 10.3390/jcm10225223
Publisher: Multidisciplinary Digital Publishing InstituteCountry: FranceDuring the first wave of the COVID-19 pandemic, some French regions were more affected than others. To relieve those areas most affected, the French government organized transfers of critical patients, notably by plane or helicopter. Our objective was to investigate the impact of such transfers on the pulse oximetric saturation (SpO2)-to-inspired fraction of oxygen (FiO2) ratio among transferred critical patients with COVID-19. We conducted a retrospective study on medical and paramedical records. The primary endpoint was the change in SpO2/FiO2 during transfers. Thirty-eight patients were transferred between 28 March and 5 April 2020, with a mean age of 62.4 years and a mean body mass index of 29.8 kg/m2. The population was 69.7% male, and the leading medical history was hypertension (42.1%), diabetes (34.2%), and dyslipidemia (18.4%). Of 28 patients with full data, we found a decrease of 28.9 points in SpO2/FiO2 (95% confidence interval, 5.8 to 52.1, p = 0.01) between the starting and the arrival intensive care units (SpO2/FiO2, 187.3 ± 61.3 and 158.4 ± 62.8 mmHg, respectively). Air medical transfers organized to relieve intensive care unit teams under surging conditions during the first COVID wave were associated with significant decreases in arterial oxygenation.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2020Open Access EnglishAuthors:Blanquart, Corinne; Chen, Chia-Lin; de URENA, José Maria; Delaplace, Marie; Gastineau, Pascal; Koning, Martin; LIEDTKE, Gernot; Pagliara, Francesca; YOSHINO, Naoyuki;Blanquart, Corinne; Chen, Chia-Lin; de URENA, José Maria; Delaplace, Marie; Gastineau, Pascal; Koning, Martin; LIEDTKE, Gernot; Pagliara, Francesca; YOSHINO, Naoyuki;Publisher: HAL CCSDCountry: France
_; This proposal adopts a holistic approach to strategic transport investment by discussing the wider economic impacts (WEIs) analysis method in terms of several dominant and emerging methods. The WEIs analysis goes beyond the effects captured in a standard cost-benefit analysis (CBA). A CBA addresses the market for transport services and infrastructure access but neglects the wider impacts on other markets. These wider impacts usually relate to agglomeration, market power, and the behavioral adaptions of firms and households. The high uncertainty in land use changes indicates that WEIs tend to occur in different forms on multiple spatial scales, varying by place and time. Additionally, some activities, such as education, have no direct market value, but may indirectly contribute to the overall economic output and human capital development in cities and regions. Given that the conventional elasticity methods are not goal oriented, it is important to ensure that the WEIs analysis accounts for the stakeholder-specific costs and benefits. Assuming that it is possible to consider all WEIs through theoretical models, major efforts should focus on establishing and maintaining appropriate methodologies and tools. The social and environmental data needed to address biodiversity issues should also be improved and promoted. Complementary to the WEIs, understanding how the behavior of agents changes in response to the new transport options will help clarify the long-term implications of transportation. This will suggest new strategies (territorial appropriation), approaches/ techniques to feasibility, and ?place-based? interrelations, that is, specific interrelations in places. This last aspect is especially important in the current context of the COVID-19 pandemic, which has affected and will likely change transportation behaviors and transport demand in the dynamic future.
- Publication . Article . 2021Open Access EnglishAuthors:Milad Mousazadeh; Biswaranjan Paital; Zohreh Naghdali; Zohreh Mortezania; Marjan Hashemi; Elnaz Karamati Niaragh; Mohammad Aghababaei; Melika Ghorbankhani; Eric Lichtfouse; Mika Sillanpää; +2 moreMilad Mousazadeh; Biswaranjan Paital; Zohreh Naghdali; Zohreh Mortezania; Marjan Hashemi; Elnaz Karamati Niaragh; Mohammad Aghababaei; Melika Ghorbankhani; Eric Lichtfouse; Mika Sillanpää; Khalid S. Hashim; Mohammad Mahdi Emamjomeh;Publisher: HAL CCSDCountries: United Kingdom, France
International audience; The outbreak of COVID-19 has made a global catastrophic situation that caused 1,039,406 deaths out of 35,347,404 infections, and it will also cause significant socio-economic losses with poverty increasing from 17.1 to 25.9%. Although the spreading rate of COVID-19 is very high on October 6, 2020, the death rate is still less than 2.94%. Nonetheless, this review article shows that the lockdown has induced numerous positive impacts on the environment and on energy consumption. For instance, the lockdown has decreased the electricity demand by 30% in Italy, India, Germany, and the USA, and by 12–20% in France, Germany, Spain, India, and the UK. Additionally, the expenditure of the fuel supply has been decreased by 4% in 2020 as compared to the previous years (2012–2019). In particular, The global demand for coal fuel has been reduced by 8% in March and April 2020 as compared to the same time in 2019. In terms of harmful emissions, the lockdowns reduced the emissions of nitrous oxides by 20–30% in China, Italy, France, Spain, and by 77.3% in São Paulo, Brazil. Similarly, the particulate matter level has been reduced from 5–15% in Western Europe, to 200% in New Delhi, India, which in turn has enhanced the air quality in a never-seen manner in recent times. In some places, such as New York, USA, CO2 emission was also reduced by 5–10%. The water quality, in several polluted areas, has also been remarkably enhanced, for example, the dissolved oxygen content in the Ganga River, India, has increased by about 80%. Traffic congestion has also been reduced worldwide, and in some areas, it has been reduced by 50%, such as New York and Los Angeles, USA. Overall, while the COVID-19 pandemic has shrinked the global economy by 13–32%, the pandemic has also clearly benefited to other sectors, which must be considered as the spotlight for the permanent revival of the global ecosystem.
Substantial popularitySubstantial popularity In top 1%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Publication . Conference object . Other literature type . Article . 2020Open Access EnglishAuthors:T. Moyo; Alain Y. Kibangou; Walter Musakwa;T. Moyo; Alain Y. Kibangou; Walter Musakwa;Publisher: HAL CCSDCountry: France
Abstract. In developing countries, metropolitan cities, due to their economic activities, attract an increasing amount of commuters on a daily basis. This has led to major freeways and roads experiencing high levels of congestion and consequently high pollution levels. In 2020, due to a global pandemic of an outbreak of Corona Virus (COVID-19), the national government declared a national shutdown with only essential traffic being allowed to operate. Given the scenario of the national lock-down this allows for the statistical analysis of the impact of essential traffic on the overall transportation system. Consequently the aim of the paper was to assess the congestion and CO2 emission impact of essential traffic for the City of Johannesburg. Using an exploratory approach, we monitored and collected traffic congestion data from the Tomtom traffic index for the metropolitan city of Johannesburg, South Africa. We develop a relationship between congestion and pollution to visualise the daily variations in pollution and congestion levels. We demonstrate this by comparing variations in congestion levels in two epochs, viz the period without movement restrictions and the period whereby movement is restricted. The results reveal essential traffic on the congestion index to be below 22 percent for both weekends and weekdays. A scenario common only during weekends in 2019. Whilst for the emission index, CO2 levels are approximately less than 45 percent throughout the week. The paper concludes the investment into mining and analysing traffic data has a significantly role for future mobility planning in both the developed and developing world and, more generally, improving the quality of commuting trips in the city.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
4 Research products, page 1 of 1
Loading
- Publication . Article . 2021Open Access EnglishAuthors:Jean-Baptiste Bouillon-Minois; Vincent Roux; Matthieu Jabaudon; Mara Flannery; Jonathan Duchenne; Maxime Dumesnil; Morgane Paillard-Turenne; Paul-Henri Gendre; Kévin Grapin; Benjamin Rieu; +4 moreJean-Baptiste Bouillon-Minois; Vincent Roux; Matthieu Jabaudon; Mara Flannery; Jonathan Duchenne; Maxime Dumesnil; Morgane Paillard-Turenne; Paul-Henri Gendre; Kévin Grapin; Benjamin Rieu; Frédéric Dutheil; Carolyne Croizier; Jeannot Schmidt; Bruno Pereira;
doi: 10.3390/jcm10225223
Publisher: Multidisciplinary Digital Publishing InstituteCountry: FranceDuring the first wave of the COVID-19 pandemic, some French regions were more affected than others. To relieve those areas most affected, the French government organized transfers of critical patients, notably by plane or helicopter. Our objective was to investigate the impact of such transfers on the pulse oximetric saturation (SpO2)-to-inspired fraction of oxygen (FiO2) ratio among transferred critical patients with COVID-19. We conducted a retrospective study on medical and paramedical records. The primary endpoint was the change in SpO2/FiO2 during transfers. Thirty-eight patients were transferred between 28 March and 5 April 2020, with a mean age of 62.4 years and a mean body mass index of 29.8 kg/m2. The population was 69.7% male, and the leading medical history was hypertension (42.1%), diabetes (34.2%), and dyslipidemia (18.4%). Of 28 patients with full data, we found a decrease of 28.9 points in SpO2/FiO2 (95% confidence interval, 5.8 to 52.1, p = 0.01) between the starting and the arrival intensive care units (SpO2/FiO2, 187.3 ± 61.3 and 158.4 ± 62.8 mmHg, respectively). Air medical transfers organized to relieve intensive care unit teams under surging conditions during the first COVID wave were associated with significant decreases in arterial oxygenation.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Other ORP type . 2020Open Access EnglishAuthors:Blanquart, Corinne; Chen, Chia-Lin; de URENA, José Maria; Delaplace, Marie; Gastineau, Pascal; Koning, Martin; LIEDTKE, Gernot; Pagliara, Francesca; YOSHINO, Naoyuki;Blanquart, Corinne; Chen, Chia-Lin; de URENA, José Maria; Delaplace, Marie; Gastineau, Pascal; Koning, Martin; LIEDTKE, Gernot; Pagliara, Francesca; YOSHINO, Naoyuki;Publisher: HAL CCSDCountry: France
_; This proposal adopts a holistic approach to strategic transport investment by discussing the wider economic impacts (WEIs) analysis method in terms of several dominant and emerging methods. The WEIs analysis goes beyond the effects captured in a standard cost-benefit analysis (CBA). A CBA addresses the market for transport services and infrastructure access but neglects the wider impacts on other markets. These wider impacts usually relate to agglomeration, market power, and the behavioral adaptions of firms and households. The high uncertainty in land use changes indicates that WEIs tend to occur in different forms on multiple spatial scales, varying by place and time. Additionally, some activities, such as education, have no direct market value, but may indirectly contribute to the overall economic output and human capital development in cities and regions. Given that the conventional elasticity methods are not goal oriented, it is important to ensure that the WEIs analysis accounts for the stakeholder-specific costs and benefits. Assuming that it is possible to consider all WEIs through theoretical models, major efforts should focus on establishing and maintaining appropriate methodologies and tools. The social and environmental data needed to address biodiversity issues should also be improved and promoted. Complementary to the WEIs, understanding how the behavior of agents changes in response to the new transport options will help clarify the long-term implications of transportation. This will suggest new strategies (territorial appropriation), approaches/ techniques to feasibility, and ?place-based? interrelations, that is, specific interrelations in places. This last aspect is especially important in the current context of the COVID-19 pandemic, which has affected and will likely change transportation behaviors and transport demand in the dynamic future.
- Publication . Article . 2021Open Access EnglishAuthors:Milad Mousazadeh; Biswaranjan Paital; Zohreh Naghdali; Zohreh Mortezania; Marjan Hashemi; Elnaz Karamati Niaragh; Mohammad Aghababaei; Melika Ghorbankhani; Eric Lichtfouse; Mika Sillanpää; +2 moreMilad Mousazadeh; Biswaranjan Paital; Zohreh Naghdali; Zohreh Mortezania; Marjan Hashemi; Elnaz Karamati Niaragh; Mohammad Aghababaei; Melika Ghorbankhani; Eric Lichtfouse; Mika Sillanpää; Khalid S. Hashim; Mohammad Mahdi Emamjomeh;Publisher: HAL CCSDCountries: United Kingdom, France
International audience; The outbreak of COVID-19 has made a global catastrophic situation that caused 1,039,406 deaths out of 35,347,404 infections, and it will also cause significant socio-economic losses with poverty increasing from 17.1 to 25.9%. Although the spreading rate of COVID-19 is very high on October 6, 2020, the death rate is still less than 2.94%. Nonetheless, this review article shows that the lockdown has induced numerous positive impacts on the environment and on energy consumption. For instance, the lockdown has decreased the electricity demand by 30% in Italy, India, Germany, and the USA, and by 12–20% in France, Germany, Spain, India, and the UK. Additionally, the expenditure of the fuel supply has been decreased by 4% in 2020 as compared to the previous years (2012–2019). In particular, The global demand for coal fuel has been reduced by 8% in March and April 2020 as compared to the same time in 2019. In terms of harmful emissions, the lockdowns reduced the emissions of nitrous oxides by 20–30% in China, Italy, France, Spain, and by 77.3% in São Paulo, Brazil. Similarly, the particulate matter level has been reduced from 5–15% in Western Europe, to 200% in New Delhi, India, which in turn has enhanced the air quality in a never-seen manner in recent times. In some places, such as New York, USA, CO2 emission was also reduced by 5–10%. The water quality, in several polluted areas, has also been remarkably enhanced, for example, the dissolved oxygen content in the Ganga River, India, has increased by about 80%. Traffic congestion has also been reduced worldwide, and in some areas, it has been reduced by 50%, such as New York and Los Angeles, USA. Overall, while the COVID-19 pandemic has shrinked the global economy by 13–32%, the pandemic has also clearly benefited to other sectors, which must be considered as the spotlight for the permanent revival of the global ecosystem.
Substantial popularitySubstantial popularity In top 1%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Publication . Conference object . Other literature type . Article . 2020Open Access EnglishAuthors:T. Moyo; Alain Y. Kibangou; Walter Musakwa;T. Moyo; Alain Y. Kibangou; Walter Musakwa;Publisher: HAL CCSDCountry: France
Abstract. In developing countries, metropolitan cities, due to their economic activities, attract an increasing amount of commuters on a daily basis. This has led to major freeways and roads experiencing high levels of congestion and consequently high pollution levels. In 2020, due to a global pandemic of an outbreak of Corona Virus (COVID-19), the national government declared a national shutdown with only essential traffic being allowed to operate. Given the scenario of the national lock-down this allows for the statistical analysis of the impact of essential traffic on the overall transportation system. Consequently the aim of the paper was to assess the congestion and CO2 emission impact of essential traffic for the City of Johannesburg. Using an exploratory approach, we monitored and collected traffic congestion data from the Tomtom traffic index for the metropolitan city of Johannesburg, South Africa. We develop a relationship between congestion and pollution to visualise the daily variations in pollution and congestion levels. We demonstrate this by comparing variations in congestion levels in two epochs, viz the period without movement restrictions and the period whereby movement is restricted. The results reveal essential traffic on the congestion index to be below 22 percent for both weekends and weekdays. A scenario common only during weekends in 2019. Whilst for the emission index, CO2 levels are approximately less than 45 percent throughout the week. The paper concludes the investment into mining and analysing traffic data has a significantly role for future mobility planning in both the developed and developing world and, more generally, improving the quality of commuting trips in the city.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.