- home
- Advanced Search
49,833 Research products, page 1 of 4,984
Loading
- Research data . 2021Open Access GermanAuthors:Robert Koch-Institut;Robert Koch-Institut;Publisher: Zenodo
Im Datensatz 'SARS-CoV-2 Infektionen in Deutschland' werden die tagesaktuellen Fallzahlen, der nach den Vorgaben des Infektionsschutzgesetzes - IfSG - von den Gesundheitsämtern in Deutschand gemeldeten positiven SARS-Cov-2 Infektionen, Todes- und Genesungsfälle bereitgestellt.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open AccessAuthors:Moxley, Tristan;Moxley, Tristan;Publisher: figshare
Attached is the primary sources of data used in the manuscript for "Application of Elastic Net Regression for Modeling COVID-19 Sociodemographic Risk Factors."
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2020 . Embargo End Date: 11 Nov 2020Open Access GermanAuthors:Intensivregister-Team am RKI;Intensivregister-Team am RKI;
doi: 10.25646/7508
Publisher: Robert Koch-InstitutCountry: GermanyDie Tagesdaten-CSV entspricht einem Auszug der Daten des DIVI-Intensivregisters. Die Datei enthält eine Aggregation der aktuellsten Meldungen pro Landkreis. Es werden die aktuell gemeldeten Anzahlen der COVID-19 Intensivfälle sowie die gemeldeten intensivmedizinischen Behandlungskapazitäten angezeigt. Die Tagesdaten-CSV liefert dabei ausschließlich einen Blick auf die Daten gemäß dem Stand des betrachteten Tages. Die Daten sind im situationsbedingten Kontext aufbereitet, damit sind verschiedene Tagesdaten-CSVs u.U. nicht direkt miteinander vergleichbar. Die aktuellsten Meldungen werden im gewählten Betrachtungszeitfenster über alle Meldebereiche und Standorte aufsummiert. Weitere Informationen sind zu finden unter https://www.intensivregister.de/#/faq
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2021 . Embargo End Date: 10 Feb 2021Open Access GermanAuthors:Intensivregister-Team am RKI;Intensivregister-Team am RKI;
doi: 10.25646/7993
Publisher: Robert Koch-InstitutCountry: GermanyDie Tagesdaten-CSV entspricht einem Auszug der Daten des DIVI-Intensivregisters. Die Datei enthält eine Aggregation der aktuellsten Meldungen pro Landkreis. Es werden die aktuell gemeldeten Anzahlen der COVID-19 Intensivfälle sowie die gemeldeten intensivmedizinischen Behandlungskapazitäten angezeigt. Die Tagesdaten-CSV liefert dabei ausschließlich einen Blick auf die Daten gemäß dem Stand des betrachteten Tages. Die Daten sind im situationsbedingten Kontext aufbereitet, damit sind verschiedene Tagesdaten-CSVs u.U. nicht direkt miteinander vergleichbar. Die aktuellsten Meldungen werden im gewählten Betrachtungszeitfenster über alle Meldebereiche und Standorte aufsummiert. Weitere Informationen sind zu finden unter https://www.intensivregister.de/#/faq
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open AccessAuthors:Al-nuwaiser, Waleed;Al-nuwaiser, Waleed;Publisher: figshare
collected data for the effect of visual imagery in Covid-19 social media posts on users’ perception- PS1, PS2 and PS3
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open Access EnglishAuthors:Bardi, Alessia; Kuchma, Iryna; Brobov, Evgeny; Truccolo, Ivana; Monteiro, Elizabete; Casalegno, Carlotta; Clary, Erin; Romanowski, Andrew; Pavone, Gina; Artini, Michele; +19 moreBardi, Alessia; Kuchma, Iryna; Brobov, Evgeny; Truccolo, Ivana; Monteiro, Elizabete; Casalegno, Carlotta; Clary, Erin; Romanowski, Andrew; Pavone, Gina; Artini, Michele; Atzori, Claudio; Bäcker, Amelie; Baglioni, Miriam; Czerniak, Andreas; De Bonis, Michele; Dimitropoulos, Harry; Foufoulas, Ioannis; Horst, Marek; Iatropoulou, Katerina; Jacewicz, Przemyslaw; Kokogiannaki, Argiro; La Bruzzo, Sandro; Lazzeri, Emma; Löhden, Aenne; Manghi, Paolo; Mannocci, Andrea; Manola, Natalia; Ottonello, Enrico; Schirrwagen, Jochen;Publisher: ZenodoCountries: Germany, ItalyProject: EC | OpenAIRE Nexus (101017452), EC | OpenAIRE-Advance (777541)
This dump provides access to the metadata records of publications, research data, software and projects that may be relevant to the Corona Virus Disease (COVID-19) fight. The dump contains records of the OpenAIRE COVID-19 Gateway, identified via full-text mining and inference techniques applied to the OpenAIRE Research Graph. The Graph is one of the largest Open Access collections of metadata records and links between publications, datasets, software, projects, funders, and organizations, aggregating 12,000+ scientific data sources world-wide, among which the Covid-19 data sources Zenodo COVID-19 Community, WHO (World Health Organization), BIP! FInder for COVID-19, Protein Data Bank, Dimensions, scienceOpen, and RSNA. The dump consists of a tar archive containing gzip files with one json per line. Each json is compliant to the schema available at https://doi.org/10.5281/zenodo.4723499.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2021Open AccessAuthors:Locey, Kenneth; Webb, Thomas; Khan, Jawad; Antony, Anuja; Hota, Bala;Locey, Kenneth; Webb, Thomas; Khan, Jawad; Antony, Anuja; Hota, Bala;Publisher: Zenodo
Date provided here are based on data our application uses. Specifically, aggregated reports of cumulative cases across US states and territories from the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) public GitHub repository, and state and territory population sizes based on publically avialable US Census Bureau data (2010 – 2019). See the associated mansuscript and/or our application's public GitHub repository (https://github.com/Rush-Quality-Analytics/SupplyDemand) for greater details. To recreate Figure 1 of the main manuscript, run the following scripts in a python environment or suitable terminal window with python 3.6+ installed: 1. ModelFxns_Figs.py -- A script to generate the general predicted forms of each model; associated with Figure 1 of the associated manuscript. Generates the Model_Forms.png file located in the figures folder. 2. ModelPerformance_Figs.py -- A script to generate results figures for each model; associated with Figure 1 of the associated manuscript. Generates the Model_Performance.png file located in the figures folder. Included data files 1. model_results_dataframe.pkl -- A python-specific pickle file located in the data folder and which contains results for each model's predictive accuracy across time and US states and terroritories. Used by ModelPerformance_Figs.py. 2. COVID-CASES-DF.txt -- A file located in the data folder and which contains data downloaded and curated from JHU CSSE. 3. StatePops.csv -- A file located in the data folder and which contains data on US State and territory population sizes as well as reported dates of COVID-19 arrival (gathered from state/territory public websites). Additional python scripts 1. results_dataframe.py -- A script to regenerate the model_results_dataframe.pkl file. Warning: This script may take several days to run because of the many iterations needed for the SEIR-SD model. Running this script will overwrite the existing model_results_dataframe.pkl file, so take necessary precautions. 2. model_fxns.py -- A script containing functions for running models used by our application. This script is used by results_dataframe.py to generatth the model_results_dataframe.pkl file. We developed an application (https://rush-covid19.herokuapp.com/) to aid US hospitals in planning their response to the ongoing COVID-19 pandemic. Our application forecasts hospital visits, admits, discharges, and needs for hospital beds, ventilators, and personal protective equipment by coupling COVID-19 predictions to models of time lags, patient carry-over, and length-of-stay. Users can choose from seven COVID-19 models, customize a large set of parameters, examine trends in testing and hospitalization, and download forecast data. The data and scripts contained herein are used to generate Figure 1 of the associated manuscript, which presents general forms of the models used by our application and presents results for each model across time. 1. The model_results_dataframe.pkl file is a python specific file format. 2. Running the ModelFxns_Figs.py and ModelPerformance_Figs.py is all that is needed to recreate the subplots of figure 1. The user should have the following libraries/softwares installed: Python 3.6 or greater numpy 1.16 or greater pandas 0.24 or greater
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open AccessAuthors:City of Ottawa;City of Ottawa;Publisher: Ottawa Ouverte
Date de création: Données en vigueur en janvier 2022. Fréquence de la mise à jour: Lundi, mercredi et vendrediExactitude: Points à considérer pour l'interprétation des données :Les données sont extraites de COVaxON à l'aide de Intellihealth Ontario. COVaxON est un système dynamique qui permet des mises à jour continues. Pour cette raison, les données représentent un instantané au moment de l'extraction et peuvent différer des mises à jour précédentes ou ultérieures du tableau de bord.Intellihealth Ontario ne retourne que les dossiers des clients qui reçoivent leurs vaccins à Ottawa ou qui ont une adresse à Ottawa.Les données comprennent uniquement les résidents du Québec vaccinés à Ottawa.La résidence est basée sur l'adresse du client. Cependant, les informations d'adresse dans COVaxON ne sont pas toujours complètes. Seuls les clients ayant fourni une adresse au Québec sont considérés comme des résidents du Québec.Les nombres indiqués comprennent les personnes qui ont reçu leur première, deuxième ou troisième dose de vaccin contre la COVID-19 à Ottawa. Caractéristiques - Champs de données :Catégorie d'âge - groupes d'âge basés sur l'année de naissance d'un individu.Dose 1 – Le nombre de résidents du Québec qui ont reçu leur première dose d'un vaccin contre la COVID-19 à Ottawa. Dose 2 – Le nombre de résidents du Québec qui ont reçu leur deuxième dose d'un vaccin contre la COVID-19 à Ottawa.Dose 3 – Le nombre de résidents du Québec qui ont reçu leur troisième dose d'un vaccin contre la COVID-19 à Ottawa.Doses totales – Le nombre total de doses d'un vaccin contre la COVID-19 qui ont été administrées à Ottawa à des résidents du Québec.Auteur: Équipe d'épidémiologie de SPOCourriel de l'auteur: OPH-Epidemiology@ottawa.caOrganisation responsable de la mise à jour des données: Épidémiologie et données probantes, Santé publique Ottawa
- Research data . 2021Open Access GermanAuthors:an der Heiden, Matthias;an der Heiden, Matthias;Publisher: Zenodo
Das Nowcasting erstellt eine Schätzung des Verlaufs der Anzahl von bereits erfolgten SARS-CoV-2-Erkrankungsfällen in Deutschland unter Berücksichtigung des Diagnose-, Melde- und Übermittlungsverzugs. Aufbauend auf dem Nowcasting kann eine Schätzung der zeitabhängigen Reproduktionszahl R durchgeführt werden. Die Reproduktionszahl beschreibt, wie viele Menschen eine infizierte Person im Mittel ansteckt. Sie kann nicht alleine als Maß für Wirksamkeit/Notwendigkeit von Maßnahmen herangezogen werden. Wichtig sind außerdem u.a. die absolute Zahl der täglichen Neuinfektionen sowie die Schwere der Erkrankungen. Die absolute Zahl der Neuinfektionen muss klein genug sein, um eine effektive Kontaktpersonennachverfolgung zu ermöglichen und die Kapazitäten von Intensivbetten nicht zu überlasten.
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2020Open AccessAuthors:tang lizi;tang lizi;Publisher: Zenodo
The data supporting the conclusions in "COVID-19" paper.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
49,833 Research products, page 1 of 4,984
Loading
- Research data . 2021Open Access GermanAuthors:Robert Koch-Institut;Robert Koch-Institut;Publisher: Zenodo
Im Datensatz 'SARS-CoV-2 Infektionen in Deutschland' werden die tagesaktuellen Fallzahlen, der nach den Vorgaben des Infektionsschutzgesetzes - IfSG - von den Gesundheitsämtern in Deutschand gemeldeten positiven SARS-Cov-2 Infektionen, Todes- und Genesungsfälle bereitgestellt.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open AccessAuthors:Moxley, Tristan;Moxley, Tristan;Publisher: figshare
Attached is the primary sources of data used in the manuscript for "Application of Elastic Net Regression for Modeling COVID-19 Sociodemographic Risk Factors."
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2020 . Embargo End Date: 11 Nov 2020Open Access GermanAuthors:Intensivregister-Team am RKI;Intensivregister-Team am RKI;
doi: 10.25646/7508
Publisher: Robert Koch-InstitutCountry: GermanyDie Tagesdaten-CSV entspricht einem Auszug der Daten des DIVI-Intensivregisters. Die Datei enthält eine Aggregation der aktuellsten Meldungen pro Landkreis. Es werden die aktuell gemeldeten Anzahlen der COVID-19 Intensivfälle sowie die gemeldeten intensivmedizinischen Behandlungskapazitäten angezeigt. Die Tagesdaten-CSV liefert dabei ausschließlich einen Blick auf die Daten gemäß dem Stand des betrachteten Tages. Die Daten sind im situationsbedingten Kontext aufbereitet, damit sind verschiedene Tagesdaten-CSVs u.U. nicht direkt miteinander vergleichbar. Die aktuellsten Meldungen werden im gewählten Betrachtungszeitfenster über alle Meldebereiche und Standorte aufsummiert. Weitere Informationen sind zu finden unter https://www.intensivregister.de/#/faq
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2021 . Embargo End Date: 10 Feb 2021Open Access GermanAuthors:Intensivregister-Team am RKI;Intensivregister-Team am RKI;
doi: 10.25646/7993
Publisher: Robert Koch-InstitutCountry: GermanyDie Tagesdaten-CSV entspricht einem Auszug der Daten des DIVI-Intensivregisters. Die Datei enthält eine Aggregation der aktuellsten Meldungen pro Landkreis. Es werden die aktuell gemeldeten Anzahlen der COVID-19 Intensivfälle sowie die gemeldeten intensivmedizinischen Behandlungskapazitäten angezeigt. Die Tagesdaten-CSV liefert dabei ausschließlich einen Blick auf die Daten gemäß dem Stand des betrachteten Tages. Die Daten sind im situationsbedingten Kontext aufbereitet, damit sind verschiedene Tagesdaten-CSVs u.U. nicht direkt miteinander vergleichbar. Die aktuellsten Meldungen werden im gewählten Betrachtungszeitfenster über alle Meldebereiche und Standorte aufsummiert. Weitere Informationen sind zu finden unter https://www.intensivregister.de/#/faq
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open AccessAuthors:Al-nuwaiser, Waleed;Al-nuwaiser, Waleed;Publisher: figshare
collected data for the effect of visual imagery in Covid-19 social media posts on users’ perception- PS1, PS2 and PS3
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open Access EnglishAuthors:Bardi, Alessia; Kuchma, Iryna; Brobov, Evgeny; Truccolo, Ivana; Monteiro, Elizabete; Casalegno, Carlotta; Clary, Erin; Romanowski, Andrew; Pavone, Gina; Artini, Michele; +19 moreBardi, Alessia; Kuchma, Iryna; Brobov, Evgeny; Truccolo, Ivana; Monteiro, Elizabete; Casalegno, Carlotta; Clary, Erin; Romanowski, Andrew; Pavone, Gina; Artini, Michele; Atzori, Claudio; Bäcker, Amelie; Baglioni, Miriam; Czerniak, Andreas; De Bonis, Michele; Dimitropoulos, Harry; Foufoulas, Ioannis; Horst, Marek; Iatropoulou, Katerina; Jacewicz, Przemyslaw; Kokogiannaki, Argiro; La Bruzzo, Sandro; Lazzeri, Emma; Löhden, Aenne; Manghi, Paolo; Mannocci, Andrea; Manola, Natalia; Ottonello, Enrico; Schirrwagen, Jochen;Publisher: ZenodoCountries: Germany, ItalyProject: EC | OpenAIRE Nexus (101017452), EC | OpenAIRE-Advance (777541)
This dump provides access to the metadata records of publications, research data, software and projects that may be relevant to the Corona Virus Disease (COVID-19) fight. The dump contains records of the OpenAIRE COVID-19 Gateway, identified via full-text mining and inference techniques applied to the OpenAIRE Research Graph. The Graph is one of the largest Open Access collections of metadata records and links between publications, datasets, software, projects, funders, and organizations, aggregating 12,000+ scientific data sources world-wide, among which the Covid-19 data sources Zenodo COVID-19 Community, WHO (World Health Organization), BIP! FInder for COVID-19, Protein Data Bank, Dimensions, scienceOpen, and RSNA. The dump consists of a tar archive containing gzip files with one json per line. Each json is compliant to the schema available at https://doi.org/10.5281/zenodo.4723499.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2021Open AccessAuthors:Locey, Kenneth; Webb, Thomas; Khan, Jawad; Antony, Anuja; Hota, Bala;Locey, Kenneth; Webb, Thomas; Khan, Jawad; Antony, Anuja; Hota, Bala;Publisher: Zenodo
Date provided here are based on data our application uses. Specifically, aggregated reports of cumulative cases across US states and territories from the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) public GitHub repository, and state and territory population sizes based on publically avialable US Census Bureau data (2010 – 2019). See the associated mansuscript and/or our application's public GitHub repository (https://github.com/Rush-Quality-Analytics/SupplyDemand) for greater details. To recreate Figure 1 of the main manuscript, run the following scripts in a python environment or suitable terminal window with python 3.6+ installed: 1. ModelFxns_Figs.py -- A script to generate the general predicted forms of each model; associated with Figure 1 of the associated manuscript. Generates the Model_Forms.png file located in the figures folder. 2. ModelPerformance_Figs.py -- A script to generate results figures for each model; associated with Figure 1 of the associated manuscript. Generates the Model_Performance.png file located in the figures folder. Included data files 1. model_results_dataframe.pkl -- A python-specific pickle file located in the data folder and which contains results for each model's predictive accuracy across time and US states and terroritories. Used by ModelPerformance_Figs.py. 2. COVID-CASES-DF.txt -- A file located in the data folder and which contains data downloaded and curated from JHU CSSE. 3. StatePops.csv -- A file located in the data folder and which contains data on US State and territory population sizes as well as reported dates of COVID-19 arrival (gathered from state/territory public websites). Additional python scripts 1. results_dataframe.py -- A script to regenerate the model_results_dataframe.pkl file. Warning: This script may take several days to run because of the many iterations needed for the SEIR-SD model. Running this script will overwrite the existing model_results_dataframe.pkl file, so take necessary precautions. 2. model_fxns.py -- A script containing functions for running models used by our application. This script is used by results_dataframe.py to generatth the model_results_dataframe.pkl file. We developed an application (https://rush-covid19.herokuapp.com/) to aid US hospitals in planning their response to the ongoing COVID-19 pandemic. Our application forecasts hospital visits, admits, discharges, and needs for hospital beds, ventilators, and personal protective equipment by coupling COVID-19 predictions to models of time lags, patient carry-over, and length-of-stay. Users can choose from seven COVID-19 models, customize a large set of parameters, examine trends in testing and hospitalization, and download forecast data. The data and scripts contained herein are used to generate Figure 1 of the associated manuscript, which presents general forms of the models used by our application and presents results for each model across time. 1. The model_results_dataframe.pkl file is a python specific file format. 2. Running the ModelFxns_Figs.py and ModelPerformance_Figs.py is all that is needed to recreate the subplots of figure 1. The user should have the following libraries/softwares installed: Python 3.6 or greater numpy 1.16 or greater pandas 0.24 or greater
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2022Open AccessAuthors:City of Ottawa;City of Ottawa;Publisher: Ottawa Ouverte
Date de création: Données en vigueur en janvier 2022. Fréquence de la mise à jour: Lundi, mercredi et vendrediExactitude: Points à considérer pour l'interprétation des données :Les données sont extraites de COVaxON à l'aide de Intellihealth Ontario. COVaxON est un système dynamique qui permet des mises à jour continues. Pour cette raison, les données représentent un instantané au moment de l'extraction et peuvent différer des mises à jour précédentes ou ultérieures du tableau de bord.Intellihealth Ontario ne retourne que les dossiers des clients qui reçoivent leurs vaccins à Ottawa ou qui ont une adresse à Ottawa.Les données comprennent uniquement les résidents du Québec vaccinés à Ottawa.La résidence est basée sur l'adresse du client. Cependant, les informations d'adresse dans COVaxON ne sont pas toujours complètes. Seuls les clients ayant fourni une adresse au Québec sont considérés comme des résidents du Québec.Les nombres indiqués comprennent les personnes qui ont reçu leur première, deuxième ou troisième dose de vaccin contre la COVID-19 à Ottawa. Caractéristiques - Champs de données :Catégorie d'âge - groupes d'âge basés sur l'année de naissance d'un individu.Dose 1 – Le nombre de résidents du Québec qui ont reçu leur première dose d'un vaccin contre la COVID-19 à Ottawa. Dose 2 – Le nombre de résidents du Québec qui ont reçu leur deuxième dose d'un vaccin contre la COVID-19 à Ottawa.Dose 3 – Le nombre de résidents du Québec qui ont reçu leur troisième dose d'un vaccin contre la COVID-19 à Ottawa.Doses totales – Le nombre total de doses d'un vaccin contre la COVID-19 qui ont été administrées à Ottawa à des résidents du Québec.Auteur: Équipe d'épidémiologie de SPOCourriel de l'auteur: OPH-Epidemiology@ottawa.caOrganisation responsable de la mise à jour des données: Épidémiologie et données probantes, Santé publique Ottawa
- Research data . 2021Open Access GermanAuthors:an der Heiden, Matthias;an der Heiden, Matthias;Publisher: Zenodo
Das Nowcasting erstellt eine Schätzung des Verlaufs der Anzahl von bereits erfolgten SARS-CoV-2-Erkrankungsfällen in Deutschland unter Berücksichtigung des Diagnose-, Melde- und Übermittlungsverzugs. Aufbauend auf dem Nowcasting kann eine Schätzung der zeitabhängigen Reproduktionszahl R durchgeführt werden. Die Reproduktionszahl beschreibt, wie viele Menschen eine infizierte Person im Mittel ansteckt. Sie kann nicht alleine als Maß für Wirksamkeit/Notwendigkeit von Maßnahmen herangezogen werden. Wichtig sind außerdem u.a. die absolute Zahl der täglichen Neuinfektionen sowie die Schwere der Erkrankungen. Die absolute Zahl der Neuinfektionen muss klein genug sein, um eine effektive Kontaktpersonennachverfolgung zu ermöglichen und die Kapazitäten von Intensivbetten nicht zu überlasten.
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2020Open AccessAuthors:tang lizi;tang lizi;Publisher: Zenodo
The data supporting the conclusions in "COVID-19" paper.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.