Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
108 Research products, page 1 of 11

  • COVID-19
  • 2012-2021
  • DK
  • English
  • Online Research Database In Technology

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Eugene J. Murphy; Carol Robinson; Alistair J. Hobday; Alistair J. Hobday; Alice Newton; Marion Glaser; Karen Evans; Mark Dickey-Collas; Mark Dickey-Collas; Stephanie Brodie; +1 more
    Publisher: Frontiers Media SA
    Countries: Denmark, United Kingdom, United Kingdom

    The COVID-19 pandemic is the first serious test of how science can inform decision-making in the face of an immediate global threat, yielding important lessons on how science, society and policy interact. The global societal and economic impact of COVID-19 has shown that we need to assess, plan and prepare for potential future changes. These insights are particularly important for the ocean science community because of the global connectivity of the ocean and its crucial role in the Earth's climate system and in supporting all life on Earth. With climate change already impacting society and ecosystems, implementing mitigation measures to avoid and reduce emissions of greenhouses gases is an immediate priority (IPCC, 2021). Irreversible changes are already underway in the oceans and their impacts over the coming decades will continue to affect human communities, requiring societal responses and adaptation across multiple scales (IPCC, 2019, 2021).

  • Open Access English
    Authors: 
    Jarek Kurnitski; Martin Kiil; Pawel Wargocki; Atze Boerstra; Olli Seppänen; Bjarne W. Olesen; Lidia Morawska;
    Publisher: PERGAMON-ELSEVIER SCIENCE LTD
    Countries: Netherlands, Netherlands, Finland, Denmark

    Funding Information: This research was supported by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts , ZEBE, grant 2014-2020.4.01.15-0016 funded by the European Regional Development Fund and by the Estonian Research Council (grant No. COVSG38 ). Publisher Copyright: © 2021 The Authors A new design method is proposed to calculate outdoor air ventilation rates to control respiratory infection risk in indoor spaces. We propose to use this method in future ventilation standards to complement existing ventilation criteria based on the perceived air quality and pollutant removal. The proposed method makes it possible to calculate the required ventilation rate at a given probability of infection and quanta emission rate. Present work used quanta emission rates for SARS-CoV-2 and consequently the method can be applied for other respiratory viruses with available quanta data. The method was applied to case studies representing typical rooms in public buildings. To reduce the probability of infection, the total airflow rate per infectious person revealed to be the most important parameter to reduce the infection risk. Category I ventilation rate prescribed in the EN 16798-1 standard satisfied many but not all type of spaces examined. The required ventilation rates started from about 80 L/s per room.Large variations between the results for the selected case studies made it impossible to provide a simple rule for estimating the required ventilation rates. Consequently, we conclude that to design rooms with a low infection risk the newly developed ventilation design method must be used. Peer reviewed

  • Open Access English
    Authors: 
    Anne Weiss; Franck Touret; Cécile Baronti; Magali Gilles; Bruno Hoen; Antoine Nougairède; Xavier de Lamballerie; Morten Otto Alexander Sommer;
    Publisher: Public Library of Science
    Country: Denmark

    SARS-CoV-2 variants are emerging with potential increased transmissibility highlighting the great unmet medical need for new therapies. Niclosamide is a potent anti-SARS-CoV-2 agent that has advanced in clinical development. We validate the potent antiviral efficacy of niclosamide in a SARS-CoV-2 human airway model. Furthermore, niclosamide remains its potency against the D614G, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants. Our data further support the potent anti-SARS-CoV-2 properties of niclosamide and highlights its great potential as a therapeutic agent for COVID-19.

  • Open Access English
    Authors: 
    Rukmankesh Mehra; Kasper Planeta Kepp;
    Country: Denmark

    The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.

  • Open Access English
    Authors: 
    Ivayla Roberts; Marina Wright Muelas; Joseph M. Taylor; Andrew S. Davison; Yun Xu; Justine M. Grixti; Nigel Gotts; Anatolii Sorokin; Royston Goodacre; Douglas B. Kell;
    Country: Denmark

    Abstract Introduction The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model. Objectives Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient’s infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased). Methods High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created. Results The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74–0.91) and 0.76 (CI 0.67–0.86). Conclusion Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.

  • Open Access English
    Authors: 
    Peter Edsberg Møllgaard; Sune Lehmann; Laura Alessandretti;
    Country: Denmark

    Travel restrictions have proven to be an effective strategy to control the spread of the COVID-19 epidemics, in part because they help delay disease propagation across territories. The question, however, as to how different types of travel behaviour, from commuting to holiday-related travel, contribute to the spread of infectious diseases remains open. Here, we address this issue by using factorization techniques to decompose the temporal network describing mobility flows throughout 2020 into interpretable components. Our results are based on two mobility datasets: the first is gathered from Danish mobile network operators; the second originates from the Facebook Data-For-Good project. We find that mobility patterns can be described as the aggregation of three mobility network components roughly corresponding to travel during workdays, weekends and holidays, respectively. We show that, across datasets, in periods of strict travel restrictions the component corresponding to workday travel decreases dramatically. Instead, the weekend component, increases. Finally, we study how each type of mobility (workday, weekend and holiday) contributes to epidemics spreading, by measuring how the effective distance, which quantifies how quickly a disease can travel between any two municipalities, changes across network components. This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.

  • Publication . Article . Conference object . 2021
    Open Access English
    Authors: 
    Sara Monteiro Pires;
    Country: Denmark

    Abstract The European Burden of Disease Network (burden-eu) joins 271 members from 50 countries. Upon the onset of the COVID-19 pandemic, several of these members started studies to estimate the burden of COVID-19 in their countries, and many others showed interest in taking steps to launch such studies. Capacity building is one of the key pillars of burden-eu, and the ultimate goal of several of its activities. In mid-2020, a group within burden-eu convened to establish an approach to support the network's members to establish national studies. First, the grouped discussed the methodology, data requirements and resources needed to implement a national study. Based on the output of these discussions, a comprehensive protocol was published on the network's website, and a scientific article was published in an open-access journal. To present this methodology, share already finalized studies, and discuss challenges and opportunities for future studies, in November 2020 burden-eu organized a public webinar, which was attended by over 100 participants. The network's website collects and continuously posts all published articles related to the burden of COVID Burden-eu. Burden-eu also formed the Burden of COVID-19 Working Group, which is open to all network members conducting or interested in implementing national studies. This group aims to share experiences in national burden of COVID-19 studies; support each other with calculations, model assumptions, data gaps; harmonize methodologies and align strategies for communicating results; and discuss research and upcoming evidence on long-COVID. The group meets regularly to achieve these aims. Lastly, the network launched an online discussion forum, where members can post questions and receive answers from peers in an interactive and rapid way. All these efforts have resulted in several studies being launched, and are allowing for harmonized approaches to be used and comparable estimates to be generated.

  • Open Access English
    Authors: 
    Sara Tomczyk; Angelina Taylor; Allison C Brown; Marlieke E. A. de Kraker; Aiman El-Saed; Majid Alshamrani; Rene S. Hendriksen; Megan E. Jacob; Sonja Löfmark; Olga Perovic; +7 more
    Publisher: Oxford University Press
    Country: Denmark

    Abstract Objectives The COVID-19 pandemic has had a substantial impact on health systems. The WHO Antimicrobial Resistance (AMR) Surveillance and Quality Assessment Collaborating Centres Network conducted a survey to assess the effects of COVID-19 on AMR surveillance, prevention and control. Methods From October to December 2020, WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) national focal points completed a questionnaire, including Likert scales and open-ended questions. Data were descriptively analysed, income/regional differences were assessed and free-text questions were thematically analysed. Results Seventy-three countries across income levels participated. During the COVID-19 pandemic, 67% reported limited ability to work with AMR partnerships; decreases in funding were frequently reported by low- and middle-income countries (LMICs; P < 0.01). Reduced availability of nursing, medical and public health staff for AMR was reported by 71%, 69% and 64%, respectively, whereas 67% reported stable cleaning staff availability. The majority (58%) reported reduced reagents/consumables, particularly LMICs (P < 0.01). Decreased numbers of cultures, elective procedures, chronically ill admissions and outpatients and increased ICU admissions reported could bias AMR data. Reported overall infection prevention and control (IPC) improvement could decrease AMR rates, whereas increases in selected inappropriate IPC practices and antimicrobial prescribing could increase rates. Most did not yet have complete data on changing AMR rates due to COVID-19. Conclusions This was the first survey to explore the global impact of COVID-19 on AMR among GLASS countries. Responses highlight important actions to help ensure that AMR remains a global health priority, including engaging with GLASS to facilitate reliable AMR surveillance data, seizing the opportunity to develop more sustainable IPC programmes, promoting integrated antibiotic stewardship guidance, leveraging increased laboratory capabilities and other system-strengthening efforts.

  • Open Access English
    Authors: 
    Casper Gundelund; Christian Skov;
    Publisher: The Author(s). Published by Elsevier Ltd.
    Country: Denmark

    Abstract From 11 March to end of May 2020 a lockdown was imposed in Denmark due to the Covid-19 outbreak. Concurrently a 20% increase in sales of mandatory national angling licenses was reported in Denmark, suggesting an increase in angling participation. Here, we use data collected from a citizen science platform for recreational anglers to a) explore whether the increase in participation affected multiple characteristics of the anglers that registered to the citizen science platform in spring 2020, and b) explore changes in angling effort and catch patterns during the lockdown as reported to the platform. The results indicate that the platform was able to detect changes in the characteristics of the participants in the Danish recreational angling during the Covid-19 lockdown, i.e. participants were younger, more likely to live in urban areas, less experienced, stated angling as a less important hobby, and less likely to be from outside of Denmark. The spring 2020 participants did not conduct more fishing trips compared to previous years, but their effort patterns differed. The effort patterns revealed a shift in fishing activity from weekend to weekday and, during the day, a shift in fishing activity from midday to early evening. These changes most likely reflect the extraordinary conditions that most Danes experienced during the lockdown. We found relatively lower catch rates and a trend towards retaining more fish, among the participants that registered in spring 2020. The results are discussed in relation to biological implications and lessons learned about data collection from citizen science platforms.

  • Open Access English
    Authors: 
    Frederik Boe Hüttel; Anne-Mette Iversen; Marco Bo Hansen; Bjarne Kjær Ersbøll; Svend Ellermann-Eriksen; Niels Lundtorp Olsen;
    Country: Denmark

    Ensuring the safety of healthcare workers is vital to overcome the ongoing COVID-19 pandemic. We here present an analysis of the social interactions between the healthcare workers at hospitals and nursing homes. Using data from an automated hand hygiene system, we inferred social interactions between healthcare workers to identify transmission paths of infection in hospitals and nursing homes. A majority of social interactions occurred in medication rooms and kitchens emphasising that health-care workers should be especially aware of following the infection prevention guidelines in these places. Using epidemiology simulations of disease at the locations, we found no need to quarantine all healthcare workers at work with a contagious colleague. Only 14.1% and 24.2% of the health-care workers in the hospitals and nursing homes are potentially infected when we disregard hand sanitization and assume the disease is very infectious. Based on our simulations, we observe a 41% and 26% reduction in the number of infected healthcare workers at the hospital and nursing home, when we assume that hand sanitization reduces the spread by 20% from people to people and 99% from people to objects. The analysis and results presented here forms a basis for future research to explore the potential of a fully automated contact tracing systems.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
108 Research products, page 1 of 11
  • Open Access English
    Authors: 
    Eugene J. Murphy; Carol Robinson; Alistair J. Hobday; Alistair J. Hobday; Alice Newton; Marion Glaser; Karen Evans; Mark Dickey-Collas; Mark Dickey-Collas; Stephanie Brodie; +1 more
    Publisher: Frontiers Media SA
    Countries: Denmark, United Kingdom, United Kingdom

    The COVID-19 pandemic is the first serious test of how science can inform decision-making in the face of an immediate global threat, yielding important lessons on how science, society and policy interact. The global societal and economic impact of COVID-19 has shown that we need to assess, plan and prepare for potential future changes. These insights are particularly important for the ocean science community because of the global connectivity of the ocean and its crucial role in the Earth's climate system and in supporting all life on Earth. With climate change already impacting society and ecosystems, implementing mitigation measures to avoid and reduce emissions of greenhouses gases is an immediate priority (IPCC, 2021). Irreversible changes are already underway in the oceans and their impacts over the coming decades will continue to affect human communities, requiring societal responses and adaptation across multiple scales (IPCC, 2019, 2021).

  • Open Access English
    Authors: 
    Jarek Kurnitski; Martin Kiil; Pawel Wargocki; Atze Boerstra; Olli Seppänen; Bjarne W. Olesen; Lidia Morawska;
    Publisher: PERGAMON-ELSEVIER SCIENCE LTD
    Countries: Netherlands, Netherlands, Finland, Denmark

    Funding Information: This research was supported by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts , ZEBE, grant 2014-2020.4.01.15-0016 funded by the European Regional Development Fund and by the Estonian Research Council (grant No. COVSG38 ). Publisher Copyright: © 2021 The Authors A new design method is proposed to calculate outdoor air ventilation rates to control respiratory infection risk in indoor spaces. We propose to use this method in future ventilation standards to complement existing ventilation criteria based on the perceived air quality and pollutant removal. The proposed method makes it possible to calculate the required ventilation rate at a given probability of infection and quanta emission rate. Present work used quanta emission rates for SARS-CoV-2 and consequently the method can be applied for other respiratory viruses with available quanta data. The method was applied to case studies representing typical rooms in public buildings. To reduce the probability of infection, the total airflow rate per infectious person revealed to be the most important parameter to reduce the infection risk. Category I ventilation rate prescribed in the EN 16798-1 standard satisfied many but not all type of spaces examined. The required ventilation rates started from about 80 L/s per room.Large variations between the results for the selected case studies made it impossible to provide a simple rule for estimating the required ventilation rates. Consequently, we conclude that to design rooms with a low infection risk the newly developed ventilation design method must be used. Peer reviewed

  • Open Access English
    Authors: 
    Anne Weiss; Franck Touret; Cécile Baronti; Magali Gilles; Bruno Hoen; Antoine Nougairède; Xavier de Lamballerie; Morten Otto Alexander Sommer;
    Publisher: Public Library of Science
    Country: Denmark

    SARS-CoV-2 variants are emerging with potential increased transmissibility highlighting the great unmet medical need for new therapies. Niclosamide is a potent anti-SARS-CoV-2 agent that has advanced in clinical development. We validate the potent antiviral efficacy of niclosamide in a SARS-CoV-2 human airway model. Furthermore, niclosamide remains its potency against the D614G, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants. Our data further support the potent anti-SARS-CoV-2 properties of niclosamide and highlights its great potential as a therapeutic agent for COVID-19.

  • Open Access English
    Authors: 
    Rukmankesh Mehra; Kasper Planeta Kepp;
    Country: Denmark

    The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.

  • Open Access English
    Authors: 
    Ivayla Roberts; Marina Wright Muelas; Joseph M. Taylor; Andrew S. Davison; Yun Xu; Justine M. Grixti; Nigel Gotts; Anatolii Sorokin; Royston Goodacre; Douglas B. Kell;
    Country: Denmark

    Abstract Introduction The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model. Objectives Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient’s infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased). Methods High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created. Results The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74–0.91) and 0.76 (CI 0.67–0.86). Conclusion Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.

  • Open Access English
    Authors: 
    Peter Edsberg Møllgaard; Sune Lehmann; Laura Alessandretti;
    Country: Denmark

    Travel restrictions have proven to be an effective strategy to control the spread of the COVID-19 epidemics, in part because they help delay disease propagation across territories. The question, however, as to how different types of travel behaviour, from commuting to holiday-related travel, contribute to the spread of infectious diseases remains open. Here, we address this issue by using factorization techniques to decompose the temporal network describing mobility flows throughout 2020 into interpretable components. Our results are based on two mobility datasets: the first is gathered from Danish mobile network operators; the second originates from the Facebook Data-For-Good project. We find that mobility patterns can be described as the aggregation of three mobility network components roughly corresponding to travel during workdays, weekends and holidays, respectively. We show that, across datasets, in periods of strict travel restrictions the component corresponding to workday travel decreases dramatically. Instead, the weekend component, increases. Finally, we study how each type of mobility (workday, weekend and holiday) contributes to epidemics spreading, by measuring how the effective distance, which quantifies how quickly a disease can travel between any two municipalities, changes across network components. This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.

  • Publication . Article . Conference object . 2021
    Open Access English
    Authors: 
    Sara Monteiro Pires;
    Country: Denmark

    Abstract The European Burden of Disease Network (burden-eu) joins 271 members from 50 countries. Upon the onset of the COVID-19 pandemic, several of these members started studies to estimate the burden of COVID-19 in their countries, and many others showed interest in taking steps to launch such studies. Capacity building is one of the key pillars of burden-eu, and the ultimate goal of several of its activities. In mid-2020, a group within burden-eu convened to establish an approach to support the network's members to establish national studies. First, the grouped discussed the methodology, data requirements and resources needed to implement a national study. Based on the output of these discussions, a comprehensive protocol was published on the network's website, and a scientific article was published in an open-access journal. To present this methodology, share already finalized studies, and discuss challenges and opportunities for future studies, in November 2020 burden-eu organized a public webinar, which was attended by over 100 participants. The network's website collects and continuously posts all published articles related to the burden of COVID Burden-eu. Burden-eu also formed the Burden of COVID-19 Working Group, which is open to all network members conducting or interested in implementing national studies. This group aims to share experiences in national burden of COVID-19 studies; support each other with calculations, model assumptions, data gaps; harmonize methodologies and align strategies for communicating results; and discuss research and upcoming evidence on long-COVID. The group meets regularly to achieve these aims. Lastly, the network launched an online discussion forum, where members can post questions and receive answers from peers in an interactive and rapid way. All these efforts have resulted in several studies being launched, and are allowing for harmonized approaches to be used and comparable estimates to be generated.

  • Open Access English
    Authors: 
    Sara Tomczyk; Angelina Taylor; Allison C Brown; Marlieke E. A. de Kraker; Aiman El-Saed; Majid Alshamrani; Rene S. Hendriksen; Megan E. Jacob; Sonja Löfmark; Olga Perovic; +7 more
    Publisher: Oxford University Press
    Country: Denmark

    Abstract Objectives The COVID-19 pandemic has had a substantial impact on health systems. The WHO Antimicrobial Resistance (AMR) Surveillance and Quality Assessment Collaborating Centres Network conducted a survey to assess the effects of COVID-19 on AMR surveillance, prevention and control. Methods From October to December 2020, WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) national focal points completed a questionnaire, including Likert scales and open-ended questions. Data were descriptively analysed, income/regional differences were assessed and free-text questions were thematically analysed. Results Seventy-three countries across income levels participated. During the COVID-19 pandemic, 67% reported limited ability to work with AMR partnerships; decreases in funding were frequently reported by low- and middle-income countries (LMICs; P < 0.01). Reduced availability of nursing, medical and public health staff for AMR was reported by 71%, 69% and 64%, respectively, whereas 67% reported stable cleaning staff availability. The majority (58%) reported reduced reagents/consumables, particularly LMICs (P < 0.01). Decreased numbers of cultures, elective procedures, chronically ill admissions and outpatients and increased ICU admissions reported could bias AMR data. Reported overall infection prevention and control (IPC) improvement could decrease AMR rates, whereas increases in selected inappropriate IPC practices and antimicrobial prescribing could increase rates. Most did not yet have complete data on changing AMR rates due to COVID-19. Conclusions This was the first survey to explore the global impact of COVID-19 on AMR among GLASS countries. Responses highlight important actions to help ensure that AMR remains a global health priority, including engaging with GLASS to facilitate reliable AMR surveillance data, seizing the opportunity to develop more sustainable IPC programmes, promoting integrated antibiotic stewardship guidance, leveraging increased laboratory capabilities and other system-strengthening efforts.

  • Open Access English
    Authors: 
    Casper Gundelund; Christian Skov;
    Publisher: The Author(s). Published by Elsevier Ltd.
    Country: Denmark

    Abstract From 11 March to end of May 2020 a lockdown was imposed in Denmark due to the Covid-19 outbreak. Concurrently a 20% increase in sales of mandatory national angling licenses was reported in Denmark, suggesting an increase in angling participation. Here, we use data collected from a citizen science platform for recreational anglers to a) explore whether the increase in participation affected multiple characteristics of the anglers that registered to the citizen science platform in spring 2020, and b) explore changes in angling effort and catch patterns during the lockdown as reported to the platform. The results indicate that the platform was able to detect changes in the characteristics of the participants in the Danish recreational angling during the Covid-19 lockdown, i.e. participants were younger, more likely to live in urban areas, less experienced, stated angling as a less important hobby, and less likely to be from outside of Denmark. The spring 2020 participants did not conduct more fishing trips compared to previous years, but their effort patterns differed. The effort patterns revealed a shift in fishing activity from weekend to weekday and, during the day, a shift in fishing activity from midday to early evening. These changes most likely reflect the extraordinary conditions that most Danes experienced during the lockdown. We found relatively lower catch rates and a trend towards retaining more fish, among the participants that registered in spring 2020. The results are discussed in relation to biological implications and lessons learned about data collection from citizen science platforms.

  • Open Access English
    Authors: 
    Frederik Boe Hüttel; Anne-Mette Iversen; Marco Bo Hansen; Bjarne Kjær Ersbøll; Svend Ellermann-Eriksen; Niels Lundtorp Olsen;
    Country: Denmark

    Ensuring the safety of healthcare workers is vital to overcome the ongoing COVID-19 pandemic. We here present an analysis of the social interactions between the healthcare workers at hospitals and nursing homes. Using data from an automated hand hygiene system, we inferred social interactions between healthcare workers to identify transmission paths of infection in hospitals and nursing homes. A majority of social interactions occurred in medication rooms and kitchens emphasising that health-care workers should be especially aware of following the infection prevention guidelines in these places. Using epidemiology simulations of disease at the locations, we found no need to quarantine all healthcare workers at work with a contagious colleague. Only 14.1% and 24.2% of the health-care workers in the hospitals and nursing homes are potentially infected when we disregard hand sanitization and assume the disease is very infectious. Based on our simulations, we observe a 41% and 26% reduction in the number of infected healthcare workers at the hospital and nursing home, when we assume that hand sanitization reduces the spread by 20% from people to people and 99% from people to objects. The analysis and results presented here forms a basis for future research to explore the potential of a fully automated contact tracing systems.