Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
3,034 Research products, page 1 of 304

  • COVID-19

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Poon, Leo L.M.; Peiris, J.S. Malik;

    The zoonotic transmission of SARS coronavirus from animals to humans revealed the potential impact of coronaviruses on mankind. This incident also triggered several surveillance programs to hunt for novel coronaviruses in human and wildlife populations. Using classical RT-PCR assays that target a highly conserved sequence among coronaviruses, we identified the first coronaviruses in bats. These assays and the cloning and sequencing of the PCR products are described in this chapter. Using the same approach in our subsequent studies, we further detected several novel coronaviruses in bats. These findings highlighted the fact that bats are important reservoirs for coronaviruses.

  • Open Access English
    Authors: 
    Reina Prieto, Jordi; López-Causape, Carla; Busquets, María; Morales, Carmen;
    Publisher: Reial Acadèmia de Medicina de les Illes Balears

    Introducción: Los principales coronavirus humanos (HCoVs) causantes de infección respiratoria son el 229E, NL63 y OC43. Debido a la falta de información sobre este tipo de infecciones en nuestra comunidad, nos ha parecido importante conocer su impacto en la enfermedad respiratoria aguda. Material y método: En el período Febrero-Abril de 2014 se ha estudiado la presencia de los diferentes virus respiratorios en 950 muestras clínicas (aspirados nasofaríngeos o frotis faríngeos) peryenecientes a 674 niños (<15 años)(70.9%) y 276 adultos (29.1%). La detección viral se ha realizado mediante una RT-PCR comercial que detecta de forma simultánea y diferencial 16 virus distintos (Anyplex RV16). Resultados: El porcentaje global de detección de los HCoVs fue del 4.6% en todas las muestras estudiadas y del 7.8% (44 casos) en las muestras positivas. Se detectaron 20 OC43 (45.4%), 17 NL63 (38.6%) y 7 229E (15.9%). En 25 casos sólo detectó un HCoV (56.8%) y 19 casos (43.2%) la infección fue mixta. En estas infecciones los virus detectados fueron: rinovirus 11 casos (57.8%), virus gripal tipo B en 6 casos (31.5%), y adenovirus y VRS-A un caso cada uno. Los HCoVs se detectaron en 26 niños (59%) y 18 adultos (41%). De los 44 casos, 13 (29.5%) precisaron de ingreso hospitalario. Ningún paciente falleció como consecuencia de la infección respiratorio por el HCoV. Conclusiones: Este estudio demuestra la importancia de las infecciones respiratorias causadas por los coronavirus humanos, especialmente en niños. Introduction: The main human Coronavirus (HCoVs) involved in human respiratory tract infections are the 229E, NL63, and OC43. Due to the lack of information about these infections in our country, it seemed important to know its impact on acute respiratory disease. Material and Methods: In the period February-April 2014, we have studied the presence of different respiratory viruses in 950 samples (throat swabs and/or nasopharyngeal aspirates) belonging to 674 (70.9%) children (<15 years) and 276 adults (29.1%). The detection of respiratory viruses was performed using commercial automatic real-time PCR system (Anyplex RV16), detecting 16 different viruses. Results: The overall HCoV detected was 4.6% of all samples studied and 7.8% (44 cases) of the positive samples. The 44 HCoVs detected corresponded to 20 HCoV-OC43 (45.4%), 17 HCoV-NL63 (38.6%) and 7 HCoV-229E (15.9%). The HCoVs alone were detected in 25 cases (56.8%) and with other respiratory viruses in 19 (43.2%) cases (coinfections). In the mixed infections, rhinovirus was detected in 11 cases (57.8%), influenzavirus type B in 6 cases (31.5%), adenovirus in 1 case and RSV-A in 1 case. HCoVs were detected in the 26 children (59%) and 18 adults (41%). Of the 44 cases, 13 (29.5%) required hospital admission, No patients infected by HCoVs died as a direct result of respiratory tract infection. Conclusions: This study demonstrates the importance of respiratory infections caused by HCoVs, especially in children

  • Greek
    Publisher: Aristotle University of Thessaloniki

    �� �������������������� ������������������������������ (������) ������ �� ������������������ ���������������� (����) ���������� ������ ���������������������������� ���������� ������ ������������ ������ ������������������������ ������ ��������������������. ������������������������ ������������ ���� ������ �������������������������������� ������. ������������������������������ ������ ����������������, ����������, ������������������ ������ ���������� ���������������������� ������ �������������������� ���������������� ������ �������������������� �������������������� ���������� ���������������������� �������������� ��������������. ������ ���������������������� �������� �������� �������� �� ������ ��������������. �� �������������� �������������� ������ ������ �������� ���������������������� �������������� �������� ���� 1994 ������ ���� ���������������������������� ���������������� ������������������ ������ ������������ �� �������������������������� ������������������ ������ ������������, ������ ������������������������-������������������������������ ���������������� ������ ������. ������������������ ������ �� ������ ������ ����, �������� ������ ���������������������� ������������������ ������ ������������������ ���� ������ ������ ������������, �������� ���� 1990 ������������������ ���� �������������������� ������������ �������������������� �������� �������� ���� �������������������� ������������������. ������������, �������� ���� 2010 �������� ������ ������ �������� ��������, ���������������������� �������������� �������������� �������������������� ������ ������������������, ���� �������������������� ������ ������������������ ���������������������� ����������������. ������������������ ������ �������� �������������������� ������ ���������������� ���������������������������� ������������ ������ ������ ������������������ ������ ������������������ ������������������ ������ ������������ �������� ������������, �������� �������� ������ �������� ���������� �������� ���������������� ������ �������� ������. �������� ������������ �������� �������������������� ���� ���������� ������ ������������ �������������������� ������ ������������������ ������ ������ ������ ������ ���� ������ �������� ������ ���� ���� ������������ RT-PCR. ���������������� �������������� ������ ���������������� ������������������ ������������ ���� 20 ���������������� ������������ ���� �������������� �������������������� ������������������������ ������ ��������������. ���� ���������������� ���������������� �������������������� ���� ���� �������������� ������������ RT-PCR, ������������ �������� ������ �������� ������ �������������������������� ���� ������������. ������������ ������ �������� ������ ������������ ���������������������� ���� ������������ ������ ������ ���������������� ������ ������������ ������ ���� ���������������� �������� ������ �������� ������������ ���������������� �������������������������� ������������������, ���� ������������������������ �������������� ������ ���� ���������� ������ ������ ���������������� ������ ������������ ���������� ���������� ������ ������ ������ ������ ����. ������ �������� ������������ ������������, ������ ���������������������� ���� ������ ���������������������� �������������������� ���� ���������������� �������� ���� �������������������� ����������, ���� ������������ ���� �������������������� ������ ���� �������������������� ������ ������ ������ �������������� ������ ������ ����������. Transmissible gastroenteritis (TGE) and epidemic diarrhea (PED) are two gastrointestinal diseases of pigs caused by coronaviruses. Transmission mainly occurs via the fecal-oral route. They are characterized by diarrhea, vomiting, dehydration and high mortality in newborn piglets with less impact on older pigs. These viruses do not infect other animal species or humans. The clinical significance of TGE was significantly reduced since 1994 due to the effective immune cross-protection initially induced by the porcine respiratory coronavirus, a mutant strain of TGEV. PED virus had also caused extensive epidemics throughout Europe, which were reduced after 1990. Nevertheless, since 2010, enormous economic losses due to a large number of PED outbreaks and epidemics was recorded in the US and China. Motivated by this, we started an extensive epidemiological research in order to record intestinal diseases of pigs in Greece, something that had never been performed. TGE and PED virus presence had been attempted with the RT-PCR method. Fecal samples from 5 different age groups of 20 pig greek farms were analyzed with the RT-PCR method. None of the samples was positive suggesting the absence of acute form of TGE and PED. Considering that no vaccinations against these coronaviruses had ever been performed, neither history of relative clinical infection had been recorded in the country, all imported animals must be checked for the absence of these viruses in order that epidemics on greek immune-na��ve animals should be avoided.

  • Publication . Article . 2004
    Open Access English
    Authors: 
    Schmitz, H.; Drosten, C.;
    Publisher: Springer-Verlag

    Zusammenfassung Die Bedeutung der Coronavirus-Infektionen beim Menschen hat sich durch das Auftauchen des SARS-Coronavirus dramatisch erhöht. In dieser Übersicht werden sowohl die epidemiologischen wie auch die klinischen Aspekte dieser neuen Virusinfektion dargestellt. Ausführlich wird auch die Rolle der virologischen Forschung bezüglich Pathogenese, Diagnostik und Therapie abgehandelt. Die jüngsten Infektionen im Dezember 2003 zeigen, dass das Thema SARS uns auch im Jahr 2004 noch weiterhin beschäftigen wird.

  • Open Access Russian
    Authors: 
    Nosalskaya, Tatiana Nikolaevna,; Martynov, Artur Viktorovich,; Bomko, Tatiana Vasilievna;
    Publisher: Zenodo

    {"references": ["Mao Y.S., Zhang B., Spector D.L. Biogenesis and function of nuclear bodies. Trends in Genetics. 2011. 27. \u21168. \u0420.295\u2013306.", "Boulikas T. Nuclear localization signals (NLS). Critical Rev. Eukaryotic Gene Expression. 1993. 3. \u21163. \u0420. 193-227.", "Rowland R.R.R., Yoo D. Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res. \u2013 2006. \u2013 95, \u21161-2. \u2013 \u0420. 23\u201333.", "Zemach A., Li Y., Ben-Meir H., Oliva M., et al. Different Domains Control the Localization and Mobility of like heterochromatin protein1 in Arabidopsis Nuclei W. Plant Cell. 2006. 18. \u0420. 133\u2013145", "Melen K., Kinnunen L., Fagerlund R., et al. Nuclear and Nucleolar Targeting of Influenza A Virus NS1 Protein: Striking Differences between Different Virus Subtypes. J. Virol. 2007. 81. \u211611. \u0420. 5995\u20136006.", "Garcia-Bustos J., Heitman J., Hall M.N. Nuclear protein localization. BBA. 1991. 107. \u21161. \u0420. 83\u2013101.", "Robbins J., Dilwortht S.M., Laskey R.A., Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence. Cell. 1991. 64. \u21163. \u0420.615\u2013623.", "Cokol M., Nair R., Rost B. Finding nuclear localization signals . EMBO Reports. 2000. 1, \u21165. \u0420. 411\u2013415.", "Dingwall C., Laskey R.A. Nuclear targeting sequences \u2014 a consensus? Trend Biochem. Sci. 1991. 16. \u0420. 478\u2013481.", "Conti E., Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin \u03b1 . Structure. 2000. 8. \u21163. \u0420. 329\u2013338.", "Fontes M.R.M., Teh T., Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-\u03b111.Edited by K. Nagai . J Mol. Biol. 2000. 297. \u21165. \u0420. 1183\u20131194.", "Hodel M.R., Corbett A.H., Hodel A.E. Dissection of a Nuclear Localization Signal . J. Biol. Chem. 2000. 276. \u21162. \u0420. 1317\u20131325.", "Matsuura Y., Stewart M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 2005. 24. \u211621. \u0420. 3681\u20133689.", "Matsuura Y., Stewart M. Structural basis for the assembly of a nuclear export complex. Nature. 2004. 432. \u21167019. \u0420. 872\u2013877.", "Gilchrist D., Rexach M. Molecular Basis for the Rapid Dissociation of Nuclear Localization Signals from Karyopherin \u03b1 in the Nucleoplasm. J. Biol. Chem. 2003. 278. \u211651. \u0420. 51937\u201351949.", "Lange A., Mills R.E., Lange C.J., et al. Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin \u03b1. J Biol Chem. 2007. 282. \u21168. \u0420. 5101\u20135105", "Boulikas T. Putative Nuclear Localization Signals (NLS) in Protein Transcripti on Factors. J. Cell. Biochem. 1994. 55. \u0420. 32-58.", "Macara I.G. Transport into and out of the Nucleus. Microbiol. Mol. Biol. Rev. 2001. 65. \u21164. \u0420. 570-594.", "Whittaker G.R. Virus nuclear import . Advanced Drug Del. Rev. 2003. 55. \u0420. 733- 747.", "Jakob R. Electroporation-mediated delivery of nucleolar targeting sequences from Semliki Forest virus nucleocapsid protein . Prep. Biochem. 1995. 25. \u21163. \u0420. 99-117.", "Michel M.R., Elgizoli M., Dai Y., et al. Karyophilic properties of Semliki Forest virus nucleocapsid protein. J. Virol. 1990. 64. \u2116 10.\u0420. 5123-5131.", "Peranen J., Rikkonen M., Liljestrom P., Kaariainen L. Nuclear localisation of Semliki Forest virus-specific nonstructural protein nsP2 . J. Virol. 1990. 64. \u2116 8. \u0420.1888-1896.", "Favre D., Studer E., Michel M.R. Two nucleolar targeting signals present in the N-temrinal part of Semliki Forest virus capsid protein . Arch. Virol. 1994. 137. \u2116 1-2. \u0420. 149-155.", "Wengler G., Wurkner D., Wengler G. Identification of a sequence element in the alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. Virol. 1992. 191. \u21162. \u0420 880-888.", "Fazakerley J.K., Boyd A., Mikkola M.L., Kaariainen L. A single amino acid change in the nuclear localisation sequence of the nsP2 protein affects the neurovirulence of semliki forest virus. J. Virol. 2002. 76. \u21161. \u2013\u0420. 392-396.", "Hiscox J.A. The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication . Virus Res. 2003. 951. \u2116 1-2. \u0420. 13\u201322.", "Wurm T., Chen H., Britton P. et al. Localisation to the nucleolus is a common feature of coronavirus nucleoproteins and the protein may disrupt host cell division. J. Virol. 2001. 75. \u211619. \u0420. 9345-9356.", "Tijms M.A., van der MeerY., SnijderE.J. Nuclear localisation of non-structural protein 1 and nucleocapsid protein of equine arteritis virus . J. Gen. Virol. 2002. 83. \u0420. 795-800.", "O'Neill R.E., Jaskunas R., Blobel G., et al. Nuclear Import of Influenza Virus RNA Can Be Mediated by Viral Nucleoprotein and Transport Factors Required for Protein Import. J. Biol. Chem. 1995. 273. \u211639. \u0420. 22701\u201322704.", "Cros J.F., Garc\u0131a-Sastre A., Palese P. An Unconventional NLS is Critical for the Nuclear Import of the Influenza A Virus Nucleoprotein and Ribonucleoprotein . Traffic. 2005. 6. \u0420. 205\u2013213.", "Cunningham M.D., Cleaveland J., Nadler S.G. An intracellular targeted NLS peptide inhibitor of karyopherin \u03b1:NF-jB interactions . Biochem. Biophys. Res. Commun. 2003. 300. \u0420. 403\u2013407.", "Ozawa M., Fujii K., Muramoto Y., et al. Contributions of Two Nuclear Localization Signals of Influenza A Virus Nucleoprotein to Viral Replication. J. Virol. 2007. 81. \u21161. \u0420. 30\u201341.", "Sun W.W.H., Pant\u00e9 Y.-H.B., N. Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein . Virol. J. 2007. 4. \u211649. \u0420. 1-12.", "Gussow A.B., Auslander N., Faure G., et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proceedings of the National Academy of Sciences. 2020. \u0420. 1-7.", "You J. Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein . J General Virol. 2005. 86. \u211612. \u0420. 3303\u20133310.", "McBride R., van Zyl M., Fielding B. The Coronavirus Nucleocapsid Is a Multifunctional Protein . Viruses. 2014. 6. \u21168. \u0420. 2991\u20133018.", "Hiscox J.A., Wurm T., Wilson L., et al. The Coronavirus Infectious Bronchitis Virus Nucleoprotein Localizes to the Nucleolus J. Virol. 2001. 75. \u21161. \u0420. 506\u2013512.", "Timani K.A., Liao Q., Ye L., et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS \u0441oronavirus. Virus Res. 2005. 114. \u0420. 23\u201334.", "Xu W., Edwards M.R., Borek D.M., et al. Ebola Virus VP24 Targets a Unique NLS Binding Site on Karyopherin Alpha 5 to Selectively Compete with Nuclear Import of Phosphorylated STAT1. Cell Host Microb. 2014. 16. \u0420. 187\u2013200.", "Xing J., Wang S., Li Y., et al. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med. Microbiol. Immunol. 2010. 200. \u21161. \u0420. 61\u201368.", "Cai M., Huang Z., Liao Z., et al. Characterization of the subcellular localization and nuclear import molecular mechanisms of herpes simplex virus 1 UL2. Biol. Chem. 2017. 398. \u21164. \u0420. 1-17.", "Abaitua F., Hollinshead M., Bolstad M., et al. A Nuclear Localization Signal in Herpesvirus Protein VP1-2 Is Essential for Infection via Capsid Routing to the Nuclear Pore. J. Virol. 2012. 86. \u211617. \u0420. 8998\u20139014.", "Li M., Zou X., Wang Y., et al . The nuclear localization signal-mediated nuclear targeting of herpes simplex virus 1 early protein UL2 is important for efficient viral production. AGING. 2020. 12. \u21163. \u0420. 2921-2938.", "Neufeldt C.J., Joyce M.A., Levin A., et al. Hepatitis C virus-induced cytoplasmic organelles use the nuclear transport machinery to establish an environment conducive to virus replication. PLoS Pathog. 2013. 9. \u211610. \u0420. 1-16.", "Levin A, Hayouka Z, Friedler A, Loyter A. Over-expression of the HIV-1 Rev promotes death of nondividing eukaryotic cells . Virus Genes. 2010. 40. \u0420. 341\u2013346.", "Levin A, Hayouka Z, Friedler A, Loyter A. Transportin 3 and importin alpha are required for effective nuclear import of HIV-1 integrase in virus-infected cells . Nucleus. 2010. 1. \u0420. 422\u2013431.", "Levin A., Neufeldt C.J., Pang D., et al. Functional Characterization of Nuclear Localization and Export Signals in Hepatitis C Virus Proteins and Their Role in the Membranous Web. PLoS ONE. 2014. 9. \u211612. \u0420. 1-36.", "Whittaker G.R., Helenius A. Nuclear Import and Export of Viruses and Virus Genomes. . Virol. 1998. 246. \u21161. \u0420. 1\u201323."]} The review provides data about nuclear localization signal peptides (NLS) and their function in the cell, incl. with a viral infection process. The binding, penetration, assembly, and budding of viruses are currently being intensively studied in many systems. However, the stages of nuclear transport during the penetration and release of the virus have remained practically unexplored. NLS were first identified in the large T antigen virus SV40 and from nucleoplasmin, and then were identified in a large number of proteins. They usually contain short base peptides includes lysine or arginine residues in the form of mono- or bipartite signals. NLSs include the "pat4" motif, which consists of a contiguous stretch four essential amino acids (arginine and lysine). Both coronaviruses and arteriviruses show similar genomic organization and belong to Nidovirales. Although both families encode nucleoproteins (N-proteins), the main function of which is to bind viral RNA, NLS-containing proteins has different sizes and do not have significant homology. The review provides the characteristics and structure of NLS for many viral proteins, and shows their role in the pathogenicity of viruses.

  • Open Access English
    Authors: 
    Mara Battilani; Andrea Balboni; Milena Bassani; Saverio Paltrinieri;
    Publisher: Published by Elsevier B.V.
    Country: Italy
  • Other research product . Other ORP type . 2020
    Open Access Catalan; Valencian
    Authors: 
    Ajuntament de Barcelona;
    Publisher: Ajuntament de Barcelona
    Country: Spain

    Dossier sobre: La ciutat després de la pandèmia del COVID-19

  • Open Access
    Authors: 
    Md Al Hasibuzzaman; Binbin Zhu; Rinki Kumari; Hossain, Mohammad Arman; Md. Mahfujul Haque Haidary; Khalid, Muhammad Sharjeel; Dattatreya Mukherjee; Md. Munnaf Hossen;
    Publisher: Zenodo

    The coronavirus disease 2019 (COVID-19) pandemic has changed the situation of the world. In December 2019, an unknown variant of pneumonia disease occurred in Wuhan, China. On Jan 7, 2020, a novel coronavirus, named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was announced in the throat swab sample of one patient in Wuhan. COVID-19 has spread quickly around the world, affecting millions of people. The World Health Organization (WHO) announced the epidemic disease caused by SARS-CoV-2 as coronavirus. This article review summarizes the epidemiological characteristics, pathophysiological changes, clinical diagnosis, treatment procedure, and prognosis of COVID-19. A comprehensive understanding of COVID-19 through research will help control the disease and increase awareness in public and medical domains.

  • Open Access English
    Authors: 
    Bonanad, Clara; García-Blas, Sergio; Tarazona-Santabalbina, Francisco José; Díez-Villanueva, Pablo; Ayesta, Ana; Sanchis Forés, Juan; Vidán-Austiz, María Teresa; Formiga Pérez, Francesc; Ariza Solé, Albert; Martínez-Sellés, Manuel;
    Publisher: Elsevier España
    Country: Spain

    SARS-CoV-2 infection, also known as COVID-19 (coronavirus infectious disease-19), was first identified in December 2019. In Spain, the first case of this infection was diagnosed on 31 January, 2020 and, by 15 April 2020, has caused 18 579 deaths, especially in the elderly. Due to the rapidly evolving situation regarding this disease, the data reported in this article may be subject to modifications. The older population are particularly susceptible to COVID-19 infection and to developing severe disease. The higher morbidity and mortality rates in older people have been associated with comorbidity, especially cardiovascular disease, and frailty, which weakens the immune response. Due to both the number of affected countries and the number of cases, the current situation constitutes an ongoing pandemic and a major health emergency. Because Spain has one of the largest older populations in the world, COVID-19 has emerged as a geriatric emergency. This document has been prepared jointly between the Section on Geriatric Cardiology of the Spanish Society of Cardiology and the Spanish Society of Geriatrics and Gerontology.

  • Publication . Article . Other literature type . 2005
    Authors: 
    Gustavo Palacios; Jabado, O.; Renwick, N.; Briese, T.; Lipkin, Wi;

    Background: Several coronaviruses establish persistent infections in vitro and in vivo, however it is unknown whether persistence is a feature of the severe acute respiratory syndorme coronavirus (SARS-CoV) life cycle. This study was conducted to investigate viral persistence. Methods: We inoculated confluent monolayers of Vero cells with SARS-CoV at a multiplicity of infection of 0.1 TCID50 and passaged the remaining cells every 4 to 8 days for a total of 11 passages. Virus was titrated at each passage by limited dilution assay and nucleocapsid antigen was detected by Western blot and immunofluoresence assays. The presence of viral particles in passage 11 cells was assessed by electron microscopy. Changes in viral genomic sequences during persistent infection were examined by DNA sequencing. Results: Cytopathic effect was extensive after initial inoculation but diminished with serial passages. Infectious virus was detected after each passage and viral growth curves were identical for parental virus stock and virus obtained from passage 11 cells. Nucleocapsid antigen was detected in the majority of cells after initial inoculation but in only 10%-40% of cells at passages 2-11. Electron microscopy confirmed the presence of viral particles in passage 11 cells. Sequence analysis at passage 11 revealed fixed mutations in the spike (S) gene and ORFs 7a-8b but not in the nucleocapsid (N) gene. Conclusions: SARS-CoV can establish a persistent infection in vitro. The mechanism for viral persistence is consistent with the formation of a carrier culture whereby a limited number of cells are infected with each round of virus replication and release. Persistence is associated with selected mutations in the SARS-CoV genome. This model may provide insight into SARS-related lung pathology and mechanisms by which humans and animals can serve as reservoirs for infection.