Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
Include:

Filters

The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
293,230 Research products, page 1 of 29,323

  • COVID-19

10
arrow_drop_down
Relevance
arrow_drop_down
  • Publication . Report . 2020
    Open Access Spanish
    Authors: 
    Sabio, Rodrigo; Giaccaglia, Gabriela; Valdez, Pascual;
    Publisher: Sociedad Paraguaya de Medicina Interna
    Country: Paraguay

    RESUMEN Paciente de 19 años, sexo femenino, residente en Buenos Aires, Argentina, que el día 25 de marzo de 2020 contacta con su médico internista de cabecera en forma privada mediante el sistema de videoconsulta por haber presentado desde 48 horas atrás, lesiones eritemato violáceas en región distal de los dedos de los pies y además lesiones máculo-eritematosas circulares de pocos milímetros en los pulpejos de los dedos de los pies. Las lesiones eran referidas como dolorosas, principalmente durante la noche y presentaban hiperalgesia al tacto. Presentaba nexo epidemiológico con dos personas afectadas por probable SARS-CoV-2, una semana previa a la aparición de estas lesiones. ABSTRACT This was a 19-year-old female patient, residing in Buenos Aires, Argentina, who in March 25, 2020 contacted her general internist doctor privately through the video consultation system for having presented violet erythematous lesions in the distal region of the toes and also circular maculo-erythematous lesions of a few millimeters on the toe tips 48 hours ago. The lesions were referred to as painful, mainly at night, and they presented hyperalgesia to the touch. She had an epidemiological link with two people affected by probable SARS-CoV-2, one week before the appearance of these injuries.

  • Open Access English
    Authors: 
    Dineen, Katy;
    Publisher: The Conversation Trust (UK) Limited
    Country: Ireland
  • Open Access English
    Authors: 
    Gomes, Deriane E. [UNESP]; Ferrari, Heitor F. [UNESP]; Rosa, Ana C. G. [UNESP]; Garcia, Andrea F. [UNESP]; Bregano, Lívia C. [UNESP]; Andrade, Alexandre L. [UNESP]; Cardoso, Tereza C. [UNESP];

    Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-27T11:25:51Z No. of bitstreams: 0 Made available in DSpace on 2014-05-27T11:25:51Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-04-18 Infection of young poults with turkey coronavirus (TCoV) produces a syndrome characterized by acute enteritis, diarrhea, anorexia, ruffled feathers, decreased body weight gain and uneven flock growth. The objective of this study was to standardize an intestinal organ culture (IOC) in order to assess host-virus interaction related to apoptosis. For this purpose the Brazilian strain (TCoV/Brazil/2006 with GenBank accession number FJ188401), was used for infection. Infected IOC cells had mitochondrial dysfunction and initial nuclear activation with MTT value of 90.7 (± 2.4) and apoptotic factor 2.21 (± 2.1), considered statistically different from uninfected IOC cells (p > 0.05). The kinetics of TCoV antigens and viral RNA was directly correlated to annexin-V, caspases- 2 and -3, p53, BCl-2 antigens at 24, 72 and 96 h post-infection (p.i.). Morphological and biochemical features of apoptosis, such as in situ nuclear fragmentation (TUNEL and annexin-V) and DNA ladder formation were also detected in infected cells at all assayed p.i. intervals. Moreover, different from other coronaviruses, the expression of both effective caspase-2 and - 3 and p53 antigens were considered lower. However, at all p.i., the BCl-2 antigens were expressed quantitatively and qualitatively as viral antigen measured by immunofluorescence microscopy analysis. Because the diagnosis of TCoV infection is only performed by infecting embryonated poult eggs, the pathological characteri tics related to host-virus interaction remain unclear. This is the first report on apoptosis of TCoV infected IOC, and reveals that it may be useful immunological method to assess virus pathogenesis. UNESP - São Paulo State University Laboratory of Virology DAPSA, Veterinary School, Araçatuba, SP UNESP - São Paulo State University Laboratory of Virology DAPSA, Veterinary School, Araçatuba, SP

  • Open Access
    Authors: 
    Carlos M. Sánchez; G. Jiménez; María D. Laviada; Isabel Correa; Carlos Suñé; María J. Bullido; Fátima Gebauer; Cristian Smerdou; Paul Callebaut; J.M. Escribano; +1 more
    Publisher: Elsevier BV
    Country: Spain

    The antigenic homology of 26 coronavirus isolates, of which 22 were antigenically related to transmissible gastroenteritis virus (TGEV), was determined with 42 monoclonal antibodies. Type, group, and interspecies specific epitopes were defined. Two group specific MAbs distinguished the enteric TGEV isolates from the respiratory variants. An antigenic subsite involved in neutralization was conserved in porcine, feline, and canine coronavirus. The classification of the human coronavirus 229E in a taxonomic cluster distinct from TGEV group is suggested. © 1990.

  • Open Access English
    Authors: 
    Duarte, R; Furtado, I; Sousa, L; Carvalho, CFA;
    Publisher: Ordem dos Médicos
    Country: Portugal

    In late December 2019, global attention shifted to China after several local health facilities reported clusters of patients with pneumonia of unknown origin epidemiologically linked to the Huanan Seafood Wholesale Market in the municipality of Wuhan, one of the country’s central cities. Local health authorities identified a novel betacoronavirus, provisionally called 2019-nCoV, the third zoonotic coronavirus in three decades to cross species infecting humans and raising global health concerns. Chinese government took extraordinary measures, to control the outbreak by closing The Market and by imposing a lockdown, first in Wuhan and later in twelve other Chinese cities. However, by the end of January 2020, there were 9826 confirmed cases (98.9% in China) a number that is estimated to be much higher and that is increasing every hour. The disease has now spread worldwide, with cases confirmed in 23 countries other than China, mainly in Southeast Asia but also in the United States of America and several European countries. On the 30 th of January, the World Health Organization’s Emergency Committee agreed that the outbreak now meets the criteria for a Public Health Emergency of International Concern. We are seeing the evolution of what is developing into a serious outbreak.

  • Open Access Indonesian
    Authors: 
    Jurakulovna, R. D. (Rakhimova); Bakhtyorovich, I. M. (Ibragimov); Akbarovich, K. A. (Kholkhodjaev); Karimovich, N. S. (Narziev);
    Publisher: Scholarzest
    Country: Indonesia

    Coronavirus infection Delta strain is now widespread in our republic, as well as in all countries of the world. It is no secret that the Delta strain infects many members today. Although the pathogenesis of coronavirus has not been fully studied, it has been found that it has tropism in all organs and tissues that contain cells that have the ACE-2 receptor. In the pathogenesis of the disease caused by the Delta strain, as a result of the chain action of cytokines along the vascular endothelium, coronavirus sepsis occurs and along with the respiratory system leads to damage to the central nervous system, digestive tract, kidneys, vascular wall. The Delta strain is a more aggressive strain than the previous COVID-19 strain, with complications of acute respiratory distress syndrome (ARDS), coronavirus septicemia and septic shock, sinus thrombosis, severe pneumonia, and death. In 2020, there was no abrupt increase in the amount of fibrinogen in the blood, the number of platelets in patients with COVID-19. In patients with the currently prevalent Delta strain, these figures are 2-2.5 times higher

  • Open Access Spanish
    Authors: 
    Gamboa-Pérez, Adriana; Escobar-Muciño, Esmeralda; Ramírez-Castillo, María Leticia;
    Publisher: Zenodo

    {"references": ["Fiorino S, Zippi M, Gallo C, Sifo D, Sabbatani S, Manfredi R, Leandri P. The rationale for a multi-step therapeutic approach based on antivirals and drugs with immunomodulatory activity in patients with coronavirus-SARS2-induced disease of different severity. Preprint. 2020:1-18.", "Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020; 725:1-19.", "Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents. 2020; 55 (3): 1-9.", "Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Xu Z. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020; 11(1):1-13.", "Rosales-Mendoza S. Will plant-made biopharmaceuticals play a role in the fight against COVID-19?. Expert Opin Biol Ther. 2020; 20(6):545\u2013548.", "Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, Mills MC. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020; 4:588\u2013596.", "Ling CQ. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med. 2020; 18(2):87\u201388.", "Base de datos de COVID-19, Vaccine & Therapeutics Tracker. Revisado el 15 de junio 2020.", "Gresham, G. ClinicalTrials. gov. Princ and Pract Clin Trials. 2020:1-18.", "Base de datos de la OMS, Draft landscape of COVID-19 candidate vaccines. Revisado el 13 de agosto 2020.", "Mill\u00e1n-O\u00f1ate J, Rodriguez-Morales AJ, Camacho-Moreno G, Mendoza-Ram\u00edrez H, Rodr\u00edguez-Sabogal IA, \u00c1lvarez-Moreno CA. New emerging zoonotic virus of concern: the 2019 novel coronavirus (SARS CoV-2). Infectio. 2020; 24(3):187-192.", "Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Xiang Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020; 11(1):1-12.", "Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020; 30(7):1346-1351.", "Saitou N. and Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987; 4:406-425.", "Zuckerkandl E. and Pauling L. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel. 1965;. 97-166.", "Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution. Academic Press, New York. 2018; 35:1547-1549.", "Base de datos de NCBI. Revisado el 13 de agosto.", "Han GZ. Pangolins Harbor SARS-CoV-2-Related Coronaviruses. Trends Microbiol. 2020;28(7):515-517.", "Lam TT, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature.2020;583(7815):282-285.", "Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020:24:91-98.", "Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020:1-5.", "Base de datos de I-Tisser, revisado en 9 de julio del 2020.", "Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Stols L, Endres M, Joachimiak A. Crystal structures of SARS-CoV-2 ADP-ribose phosphatase (ADRP): from the apo form to ligand complexes. bioRxiv. 2020:1-24.", "Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Duan Y. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582:1-24.", "Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Ge J. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Sci. 2020; 368(6492):779-782.", "Ferron F, Subissi L, Silveira De Morais AT, Le N, Sevajol M, Gluais L, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115(2): E162\u2013E171.", "Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2):81-292.", "Grant O.C., Montgomery D., Ito K., Woods R.J. 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. Biorxiv. 2020:1-17.", "Base de datos de UniProt (UniProt). (Accessed on: July 9, 2020).", "Alanagreh LA, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020; 9(5):1-11.", "Ansede M, Galocha A y Zafra M. The 12 letters that changed the world. El pais. Revisado en 7-2020.", "Perkel JM. The software that powers scientific illustration. Nature. 2020; 582 (7810):137-138.", "Base de datos de: BioRender.com, accesado 2 de agosto 2020.", "Coronavirus Replication Cycle\", by BioRender.com (2020).", "Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020:1-7.", "Guo H, Li R, Zucker S, Toole BP. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 2020; 60(4):888-891.", "Wang K, Chen W, Zhou YS, Lian J Q, Zhang Z, Du P, Wang B. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv.2020; 1-10.", "Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020:1-10.", "Perlot T, Penninger JM. ACE2\u2013From the renin\u2013angiotensin system to gut microbiota and malnutrition. Emerg Microbes Infect. 2013; 15(13): 866-873.", "Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Pia L. Immunology of COVID-19: current state of the science. Immunity. 2020; 52: 910-941.", "Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host\u2013virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020; 11(7):995-998.", "Soler MJ, Lloveras J, Batlle D. Enzima conversiva de la angiotensina 2 y su papel emergente en la regulaci\u00f3n del sistema renina-angiotensina. Medicina Cl\u00ednica. 2008; 131(6):230-236.", "Jiang F., Yang J., Zhang Y., Dong M., Wang S., Zhang Q. et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nature Reviews Cardiology. 2014; 11(7):p. 413-426.", "Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A.A, Scott D. Solomon, Renin\u2013Angiotensin\u2013Aldosterone System Inhibitors in Patients with COVID-19, New England J Med 2020; 382:1653-1659.", "D'Ardes D, Boccatonda A, Rossi I, Guagnano MT, Santilli F, Cipollone F, Bucci, M. COVID-19 and RAS: unravelling an unclear relationship. Int J Mol Sci. 2020;21(8): 1-8.", "Park A, Iwasaki A. Type I and type III interferons\u2013induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020; 24(10):870-878.", "Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020; 30:4381\u20134389.", "Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol. Mol Biol Rev. 2012; 76(1):16-32.", "Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Yuan, Z. Reduction, and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol, 2020;11(827):1-7.", "Huang KJ, Su I.J, Theron M, Wu Y C, Lai SK, Liu CC, Lei HY. An interferon\u2010\u03b3\u2010related cytokine storm in SARS patients. J Med Virol. 2005; 75(2):185-194.", "Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID\u201019) infected patients. Br J Haematol. 2020; 189: 428\u2013437.", "Yoshio T, Okamoto H, Kurasawa K, Dei Y, Hirohata S, Minota S. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016; 25(9):997-1003.", "Baig AM. Neurological manifestations in COVID\u201019 caused by SARS\u2010CoV\u20102. CNS Neurosci. 2020; 26(5):499\u2013501.", "Wadman M, Couzin-Frankel J, Kaiser J, Matacic C. How does coronavirus kill. Ferocious rampage through the body, from brain to toes. 2020:1502-1503.", "Willyard C. Coronavirus blood-clot mystery intensifies. Nature. 2020 (581): 250.", "Zhang Y, Xiao M, Zhang S, Zhang S, Li Y. et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020:382:385.", "Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. JTH. 2020; 18(6):1324\u20131329.", "Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng C. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiol. 2020; 295:715\u2013721.", "Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, LI C. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol. 2020; 55(6):1-5.", "Poggiali E, Dacrema A, Bastoni D, Tinelli V, Demichele E, Mateo Ramos P, Magnacavallo A. Can lung US help critical care clinicians in the early diagnosis of novel coronavirus (COVID-19) pneumonia? Radiology. 2020;295(3): E6-E6.", "Mongodi S, Pozzi M, Orlando A, Bouhemad B, Stella A, Tavazzi G, Mojoli F. Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience. Intensive Care Med. 2018; 44(1):123-124.", "Schmulson M, D\u00e1valos MF, Berumen J. Alerta: los s\u00edntomas gastrointestinales podr\u00edan ser una manifestaci\u00f3n de la COVID-19. Rev Gastroenterol Mex. 2020:1-7.", "Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Van Donselaar E. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369(6499):50-54.", "Viguera ME. \u00bfQue seamos m\u00e1s o menos vulnerables al SARS-CoV-2 depende de nuestros genes? Universidad de M\u00e1laga. Revisado el 19 de junio 2020.", "Ferreira CM, Vieira AT, Vinolo MA R, Oliveira FA, Curi R, Martins FDS. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res. 2014:1-13.", "Michel Aceves RDJ, Izeta Guti\u00e9rrez AC, Torres Alarc\u00f3n G, Michel Izeta ACM. The human intestinal microbiota and microbiome. (Between the keys of the kingdom and a new Pandora's Box). Rev san mil. 2018; 71(5):443-448.", "Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336(6086):1268-1273.", "Kato LM, Kawamoto S, Maruya M, Fagarasan S. The role of the adaptive immune system in regulation of gut microbiota. Immunol Rev. 2014; 260(1):67-75.", "Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes. 2012; 3(1):4-14.", "Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol. 2017; 461\u2013463.", "Geuking MB, K\u00f6ller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut microbes. 2014; 5(3):411-418.", "McIlroy JR, Mullish BH, Goldenberg SD, Ianiro G, Marchesi JR. Intestinal microbiome transfer, a novel therapeutic strategy for COVID-19 induced hyperinflammation?: In reply to, COVID-19: Immunology and treatment options, Felsenstein, Herbert McNamara et al. 2020. Clin Immunol (Orlando, Fla.). 2020; 218:1-2.", "He Y, Wang J, Li F, Shi, Y. Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 infections. Front Microbiol. 2020; 11:1-7.", "Dhar D, & Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Research. 2020; 285:1-5.", "Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5(5): 428-430.", "Cao M, Zhang D, Wang Y, Lu Y, Zhu X, Li Y, Yang Z. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. MedRxiv.2020:1-30.", "Chen D, Li X, Song Q, Hu C, Su F et al. Hypokalemia and Clinical Implications in Patients with Coronavirus Disease 2019 (COVID-19) medRxiv. 2020: 1-22.", "Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney int. 2020; 97(5):829-838.", "Wang L, Li X, Chen H, Yan S, Li D, Li Y, Gong Z. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020; 51(5):343-348.", "Anti-2019-nCoV Volunteers, Li Z, Wu M et al. Caution on kidney dysfunctions of 2019-nCoV patients. MedRxiv 2020; Publicado online el 27 de marzo 2020. Accessed on: July 10, 2020.", "Kim J, Thomsen T, Sell N, Goldsmith AJ. Abdominal and testicular pain: An atypical presentation of COVID-19. J Emerg Med. 2020; (20):30194-7.", "Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, Zhang M. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020:1-14.", "Wang S, Zhou X, Zhang T. et al. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020; 17:314\u2013315.", "Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, Li PS. No evidence of SARS-CoV-2 in semen of males recovering from COVID-19. Fertil Steril. 2020; 113(6):1135\u20131139.", "Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82(15):7264-7275.", "Giorgianni A, Vinacci G, Agosti E, Cariddi LP, Mauri M, Baruzzi F, Versino, M. Transient acute-onset tetraparesis in a COVID-19 patient. Spinal Cord. 2020; 1-3.", "Zanin L, Saraceno G, Panciani PP. et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. 2020; 62:1491\u20131494.", "Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. MedRxiv. 2020:1-7.", "Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020; 419:1-4.", "Litin SC. Cl\u00ednica Mayo: libro de la salud familiar. Trillas: M\u00e9xico 2005.", "Marino C, Dalakas, MD. Guillain-Barre syndrome: The first documented COVID-19\u2013triggered autoimmune neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2020; 7(5):1-8.", "Leonhard SE, Mandarakas MR, Gondim FA, Bateman K, Ferreira ML, Cornblath DR, Kusunoki S. Diagnosis and management of Guillain\u2013Barr\u00e9 syndrome in ten steps. Nat Rev Neurol. 2019; 15(11): 671-683.", "Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Sci. 2020; 367(6485): 1444-1448.", "Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Wei H. Aberrant pathogenic GM-CSF+ T, cells and inflammatory CD14+, CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv. 2020:1-10.", "Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J, Cheng J, Zhang X, et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med. 2020:1-12.", "Fogarty H, Townsend L, Ni Cheallaigh C, Bergin C, Martin\u2010Loeches I, Browne P, Ryan K. COVID-19 coagulopathy in Caucasian patients. Br J Haematol. 2020;189; 1044\u20131049.", "Poor HD, Ventetuolo CE, Tolbert T, Chun G, Serrao G, Zeidman A, Dangayach, NS, Olin, J, Kohli-Seth R, Powell CA. COVID-19 Critical Illness Pathophysiology Driven by Diffuse Pulmonary Thrombi and Pulmonary Endothelial Dysfunction Responsive to Thrombolysis. medRxiv. 2020:1-14.", "Fei J, Fu L, Li Y, Xiang HX, Xiang Y, Li MD, Liu FF, Xu DX, Zhao H. Reduction of lymphocyte at early stage elevates severity and death risk of COVID-19 patients: a hospital-based case-cohort study. medRxiv 2020:1-28.", "Liu Y, Li J, Liu D, Song H, Chen C, Lv M, Pei X, Hu Z. Clinical features and outcomes of 2019 novel coronavirus-infected patients with cardiac injury. medRxiv. 2020g; 1-17.", "Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020; 18(206):1-12.", "Feng, S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med. 2020;8(5):434-436.", "Guti\u00e9rrez-Ortiz C, M\u00e9ndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Ma\u00f1as R, Benito-Le\u00f3n J. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurol. 2020: 1-15.", "Sinha P, Matthay MA, Calfee CS. Is a \"Cytokine Storm\" Relevant to COVID-19? JAMA Intern Med.2020:1-3.", "Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Zhang X. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Investig. 2020; 130(5):1-1.", "Gong J, Dong H, Xia SQ, Huang YZ, Wang D, Zhao Y, Lu F. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. MedRxiv. 2020:1-17.", "Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Dong L. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020; 6(1):1-18.", "Sch\u00f6nrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020: 1-19.", "Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA., Woods RJ. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020: 1-23.", "Mozzini C, Girelli D. The role of Neutrophil Extracellular Traps in Covid-19: Only an hypothesis or a potential new field of research? Thromb Res. 2020; 191:26-27.", "Middleton EA., He XY, Denorme F, Campbell RA., Ng D, Salvatore SP, Cody MJ. Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood. 2020.", "Yipp BG, Kubes P. NETosis: how vital is it?. Blood. 2013; 122(16):2784-2794."]} RESUMEN El brote emergente de la enfermedad por coronavirus 2019 (COVID-19) causado por el coronavirus 2 del síndrome respiratorio agudo severo (SARS-CoV-2) que hasta la fecha se ha propagado por todo el mundo, ha causado preocupación en toda la sociedad, ya que en casos de pacientes críticos se detectó fallo multiorgánico como consecuencia de adquirir una infección por el SARS-CoV-2. Asimismo, a causa de esta emergencia sanitaria, por el alto número de casos y muertes reportadas por COVID-19, los gobiernos de los países donde se ha presentado esta enfermedad, han solicitado a los ciudadanos permanecer en sus hogares para disminuir el contagio. Esta situación ha afectado la vida diaria de la mayoría de los seres humanos por el aislamiento forzoso y, en consecuencia, también a la economía mundial dado que solo las empresas con actividades esenciales han podido continuar en operación. El objetivo de la presente revisión es dar a conocer información del origen del coronavirus emergente, sus características fisiológicas y moleculares, el mecanismo de infección del virus, la relación del SARS-CoV-2 con el receptor ACE2, la respuesta inmune innata y adaptativa del humano y la relación con el síndrome de liberación de citoquinas. También, comparar diversos estudios publicados, con la finalidad de obtener el consenso en la sintomatología presentada en pacientes de gravedad, con la COVID-19, en diversos órganos humanos y la determinación de elementos inmunológicos que se reportan como biomarcadores moleculares para obtener un pronóstico más rápido y eficiente de la respuesta de un paciente con la COVID-19. ABSTRACT The emerging outbreak of coronavirus disease 2019 (COVID-19) caused by the virus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that to date has spread worldwide, has caused concern throughout society, because there were reported cases of COVID-19 critical patients with multiorgan failure as a consequence of acquiring a SARS-CoV-2 infection. Likewise, a cause of this health emergency, due to the high number of cases and deaths reported by COVID-19, the governments of the countries where this disease has occurred, asked citizens to stay in their homes to reduce the transmission. This situation has affected the daily life of the majority of human beings due to isolation due to the current pandemic and consequentlythe world economy has been affected, because only companies with essential activities have been able to continue in operation. This review aims to provide information on the origin of the emerging coronavirus, the physiological and molecular characteristics, the mechanism of virus infection, the relationship of SARS-CoV-2 with the ACE2 receptor, the innate and immune response of humans and the relationship with cytokine release syndrome. Also, various published studies were compared to obtain a consensus on the symptoms presented in COVID-19 patients in various human organs and the determination of immunological elements, which are reported as molecular biomarkers to obtain a faster and more efficient prognosis and the response of a COVID-19 patient.

  • Open Access Spanish
    Authors: 
    Escobar-Muciño, Esmeralda; Gamboa-Pérez, Adriana;
    Publisher: Zenodo

    {"references": ["Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat med. 2020;26(4):450-452.", "Base de datos de los casos covid-19: Revisada en 4 de agosto del 2020.", "Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, Mills MC. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020;4: 588\u2013596.", "Ling CQ. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med. 2020;18(2): 86-87.", "Rosales MS. \"Will plant-made biopharmaceuticals play a role in the fight against COVID-19? 2020:545-548.", "Rajkumar RP. COVID-19 and mental health: A review of the existing literature. Asian J Psychiatr.2020;52:1-5.", "Base de datos de COVID-19 Vaccine & Therapeutics Tracker, revisado junio 15 2020.", "Le TT, Andreadakis Z, Kumar A, Roman, RG, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5): 305-306.", "Qiu Y, Wu D, Ning W, Zhang J, Shu T, Huang C, Li R. Postmortem Tissue Proteomics Reveals the Pathogenesis of Multiorgan Injuries of COVID-19. Res square. 2020:1-23.", "Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Li X. A trial of lopinavir\u2013ritonavir in adults hospitalized with severe Covid-19. Mass Medical Soc.2020;382(19):1-13.", "Fiorino S, Zippi M, Gallo C, Sifo D, Sabbatani S, Manfredi R, Leandri P. The rationale for a multi-step therapeutic approach based on antivirals and drugs with immunomodulatory activity in patients with coronavirus-SARS2-induced disease of different severity. Preprint.2020:1-18.", "Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, Xue M. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J Clin Microbiol. 2020:58(5):1-10.", "Li H, Wang YM, Xu JY, Cao B. Potential antiviral therapeutics for 2019 Novel Coronavirus. Chin J Tuberc Respir Dis. 2020;43: E002-E002.", "Chang R, Sun WZ. Repositioning chloroquine as ideal antiviral prophylactic against COVID-19-time is now. Preprint.2020:1-26.", "Tutunchi, H, Naeini, F, Ostadrahimi, A, Hosseinzadeh\u2010Attar, MJ. Naringenin, a flavanone with antiviral and anti\u2010inflammatory effects: A promising treatment strategy against COVID \u201019. Phytother Res. 2020; 1\u2013 11.", "Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C, Marlin R, Kahlaoui N. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020:1-8.", "Boopathi S, Poma AB, Kolandaivel, P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2020: 1-10.", "Hoffmann M, M\u00f6sbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Kr\u00fcger N, P\u00f6hlmann S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020:1-5.", "Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol. 2020; 160:1-17.", "Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren, SA, Honnold S. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014;508(7496):402-405.", "Kilian Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. 2014. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology. 2014; 450:64-70.", "Vafaei S, Razmi M, Mansoori M, Asadi-Lari M, Madjd Z. Spotlight of remdesivir in comparison with ribavirin, favipiravir, oseltamivir and umifenovir in coronavirus sisease 2019 (COVID-19) pandemic. favipiravir, oseltamivir and umifenovir in coronavirus disease. 2019:1-22.", "Pruijssers AJ, Denison MR. 2019. Nucleoside analogues for the treatment of coronavirus infections. Curr Opin Virol 35:57\u2013 62.", "Park A, Iwasaki A. Type I and Type III Interferons\u2013Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe. 2020;27(6):870\u2013878.", "Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses\u2014drug discovery and therapeutic options. Nat Rev Drug Discov. 2016; 15:327\u2013347.", "Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today. 2020;25(4):668-688.", "Elfiky AA. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020; 253:1-7.", "Gommans DF, Nas J, Pinto-Sietsma, S J, Koop Y, Konst RE, Mensink F, Thannhauser J. Rationale and design of the PRAETORIAN-COVID trial: A double-blind, placebo-controlled randomized clinical trial with valsartan for prevention of acute respiratory distress syndrome in hospitalized patients with SARS-COV-2 Infection Disease. Am Heart J.2020; 226:60-68.", "Base de datos antivirales. Revisado en 4 de agosto de 2020.", "Base de datos de la OMS, revisado 2020. P\u00e1gina de la OMS, revisada en julio 2020.", "Perkel JM. The software that powers scientific illustration. Nature. 2020;582(7810):137-138.", "Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Zhan S. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020.", "Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus\u2014A possible reference for coronavirus disease\u201019 treatment option. J Med Virol. 2020;92(6):556\u2013563.", "Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C, Marlin R, Kahlaoui N. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020:1-8.", "Shih RD, Johnson HM, Maki DG, Hennekens, CH. Hydroxychloroquine for Coronavirus: The Urgent Need for a Moratorium on Prescriptions. Am J Med. 2020:1-2.", "Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Li X. A trial of lopinavir\u2013ritonavir in adults hospitalized with severe Covid-19. Mass Medical Soc.2020;382(19):1-13.", "Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. J Biomol Struct Dyn. 2020:1-6.", "Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Peiris M. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020:178;1- 5.", "Lu CC, Chen MY, Chang YL. Potential therapeutic agents against COVID-19: What we know so far. J Chin Med Assoc. 2020. XXX:1-3.", "Peele KA, Chandrasai P, Srihansa T, Krupanidhi S, Sai AV, Babu DJ, Venkateswarulu TC. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform Med Unlocked. 2020:1-6.", "Hendaus MA. Remdesivir in the treatment of Coronavirus disease 2019 (COVID-19): A simplified summary. Journal of Biomolecular Structure and Dynamics, (just-accepted).2020:1-10.", "Maradei J, Castan\u00f3 V, Jaureguibeh\u00e9re ML. Terapia con plasma de donantes convalecientes en enfermos graves con COVID-19: un llamado a la acci\u00f3n. Revista del Hospital\" Dr. Emilio Ferreyra\". 2020;1(1): 25-30.", "Annamaria P, Eugenia Q, Paolo S. Anti-SARS-CoV-2 hyperimmune plasma workflow. Transfusion and Apheresis Science. 2020.1-6.", "Lu CC, Chen MY, Chang YL. Potential therapeutic agents against COVID-19: What we know so far. J Chin Med Assoc. 2020. XXX:1-3.", "Zha L, Li S, Pan L, Tefsen B, Li Y, French N, Villanueva EV. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID\u201019). Med J Australia. 2020;212(9):416-420.", "Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 2013;3(1):120139.", "L\u00f3pez M, Mallorqu\u00edn P, Pardo R, Vega M. Vacunas de nueva generaci\u00f3n, informe de vigilancia tecnol\u00f3gica. Genoma Espa\u00f1a. Salud Humana.2014;13:15-16.", "Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, Makhawi AM. Design of a Multiepitope-Based Peptide Vaccine against the E Protein of Human COVID-19: An Immunoinformatics Approach. Biomed Res Int.2020:1-12.", "Govea-Alonso DO, Cardineau GA, Rosales-Mendoza S. Principles of plant-based vaccines. In Genetically Engineered plants as a source of vaccines against widespread diseases. Springer New York. 2014:1-14.", "Sheikh QM, Gatherer D, Reche PA, Flower DR. Towards the knowledge-based design of universal influenza epitope ensemble vaccines. Bioinformatics.2016;32(21):3233-3239.", "Caddy, S. (2020). Developing a vaccine for covid-19.", "Wang F, Kream RM, Stefano GB. An evidence-based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit. 2020;26:1643-3750.", "Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. 2007;57(8):552-556.", "Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep.2020; 7:61\u201364.", "Lista de claves de acceso de vacunas contra COVID-19 sitio website.(accesado en 15 junio, 2020).", "Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.", "Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity.2020;52(4): 583-589.", "Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. BioRxiv.2020:1-24.", "Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front immunol. 2018; 9:1-24.", "Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020; 6:315-31.", "Merril J. Proposal for supportive/preventive treatment of COVID19 using siRNA to suppress expression of ACE2 receptors and vaccinesbased phage-display technology developed by epitopeRX. Hibryda. 2020:1-8.", "Ghosh S, Firdous, SM, Nath A. siRNA could be a potential therapy for COVID-19. EXCLI J. 2020; 19:528-531.", "Rosales-Mendoza S, Angulo C, Meza B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends in biotechnology.2016;34(2):124-136.", "Kumar G, Karthik L, Rao KVB. Plant vaccines: an overview. in microbial bioprospecting for sustainable development. Springer, Singapore. 2018:249-263.", "Shahriari AG, Habibi-Pirkoohi M. Plant-Based Recombinant Vaccine: Fact or Fiction?. GMJ. 2017;6(4):268-280.", "Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. Plants. 2020:9(1):1-21. delivery vehicles. Trends in biotechnology.2016;34(2):124-136.", "Paul M, Dolleweerd CV, Drake PM, Reljic R, Thangaraj H, Barbi T, Madeira L. Molecular pharming: future targets and aspirations. Hum Vaccin. 2011;7(3):375-382.", "Awale MM, Mody SK, Dudhatra GB, Kumar A, Patel HB, Modi CM, Kamani DR, Chauhan BN. Transgenic plant vaccine: a breakthrough in immunopharmacotherapeutics. J Vaccines Vaccin. 2012;3(147):1-7.", "Stoger E, Fischer R, Moloney M, Ma JKC. Plant molecular pharming for the treatment of chronic and infectious diseases. Annu Rev Plant Biol. 2014; 65:743-768.", "Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ. Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv. 2012;30(5):1171-1184.", "Constantin C, Neagu M, Supeanu T D, Chiurciu V, Spandidos DA. IgY turning the page toward passive immunization in COVID-19 infection. Exp Ther Med. 2020;20(1):151-158.", "Sun H, Chen S, Cai X, Xu G, Qu L. Correlation analysis of the total IgY level in hen serum, egg yolk and offspring serum. J Anim Sci Biotechnol. 2013;4(1):1-4.", "Barr IG, Rynehart C, Whitney P, Druce J. SARS-CoV-2 does not replicate in embryonated hen's eggs or in MDCK cell lines. Euro Surveill. 2020;25(25):1-5.", "Gresham, G. ClinicalTrials. gov. Princ and Pract Clin Trials. 2020:1-18.", "Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Jia SY. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet. 2020. 395(10240):1845-1854.", "Cohen J. Vaccine designers take first shots at COVID-19. 2020;368(6486): 14-16.", "Doremalen NV, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Feldmann F. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020:1-8.", "Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Dold C. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020:1-13.", "Sanal MG, Duby RC. An oral live attenuated vaccine strategy against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV). Res Ideas Outcomes. 2020:1.8.", "Wu, SC. Progress and Concept for COVID\u201019 Vaccine Development. Biotechnol J. 2020:1-3.", "Noticias vacunas en M\u00e9xico. Revisado en: 4 de Agosto del 2020)."]} RESUMEN El brote emergente de la enfermedad por coronavirus 2019 (COVID-19) continúa propagándose por todo el mundo. A la fecha, no hay agentes terapéuticos específicos contra la infección por coronavirus. Existe un número muy limitado de estos tratamientos con potencial para aplicar en el entorno clínico, en muchos de los casos se han probado nuevos antivirales, mediante la búsqueda a partir de bibliotecas de compuestos con la finalidad de realizar un tamiz para encontrar efecto antiviral mediante experimentación in vitro (mediante clonación y docking molecular) y experimentación in vivo en líneas celulares y en pacientes de prueba, con la finalidad de ser aprobados por la Administración de Medicamentos y Alimentos (FDA) y la Organización Mundial de la Salud (OMS) a futuro y curar a los pacientes enfermos y de gravedad. Razón por la cual el objetivo del presente estudio fue dirigir a la sociedad en general y dar a conocer las características y mecanismos de los antivirales y terapias utilizados como propuestas contra la enfermedad del COVID-19. Por otro lado, las industrias farmacéuticas en el mundo están creando vacunas experimentales para contrarrestar el coronavirus debido a la rápida propagación del COVID-19. Las compañías que se encuentran desarrollando las vacunas se encuentran en fases experimentales III y IV, considerándose las más avanzadas y producidas por las compañías Sinovac Biotech (China), la vacuna ChAdOx1 nCoV-19 investigada por AstraZeneca en conjunto con la Universidad de Oxford y (Reino Unido), la Moderna (Estados Unidos) y Pfizer en colaboración con BioNTech (Estados Unidos). Enfocándose en la prevención de la infección y la posibilidad de una segunda ola de esta pandemia. Es por eso que aquí se describen detalladamente las tecnologías de ciertas vacunas, así como la preclínica y las fases experimentales (I-IV) en las que se encuentran cada una, con la finalidad de informar el estatus actual. ABSTRACT The emerging outbreak of coronavirus disease 2019 (COVID-19) continues to spread worldwide. Until now, there are not specific therapeutic agents against coronavirus infection. There are reported a limited number of these treatments with the potential to apply in the clinical environment, in many cases the new antivirals have been tested, by searching from compound libraries to carry out a screening to find an antiviral effect through in vitro (through cloning and molecular docking) and in vivo experimentation (in cell lines) and illness patients to be approved by the Food and Drug Administration (FDA) and the World Health Organization (WHO) and in the future to cure sick patients. Reason why the purpose of the present study was to direct society in general and to inform the characteristics and mechanisms of antivirals and therapies used as proposals against COVID-19 disease. On the other hand, the pharmaceutical industries around the world are creating experimental vaccines to counteract the coronavirus due to the rapid spread of COVID-19. The companies that are developing the vaccines are in experimental phases III and IV, considering themselves the most advanced and produced by the companies Sinovac; the inactivated COVID-19 vaccine developed by Sinovac, the vaccine ChAdOx1 nCoV-19 of AstraZeneca investigated in conjunction with the University of Oxford and (United Kingdom), also the company La Moderna (United States) and finally Pfizer in collaboration with BioNTech (United States). All vaccines focusing on infection prevention and the possibility of a second wave of this pandemic. For these reasons, the technologies of certain vaccines were described in more detail, as well as the preclinical and the experimentation phases (I-IV).

  • Open Access
    Authors: 
    Muhammad Imran Qureshi; Nohman Khan;
    Publisher: The Association of Professional Researchers and Academicians

    The recent deadly outbreak of Novel Coronavirus (2019-COVID) accompanying human to human spread caused severe human infections. COVID19 initially encountered at the city of Wuhan in Hubei province in China. It spread rapidly, and the number of infected people, as well as fatality ratio, increased drastically around the globe. This study aims to identify the historical background of the coronavirus family that is already affected the civilization and animals. This study overviewed the overall literature published on the Coronavirus. The Scopus database is selected to analyse the published literature. The research methodology followed a strict screening process recommended in the PRISMA statement framework (2015) for the screening and quality assessment of systematic literature review. Final 41 studies were included for the systematic literature review. A systematic review of the past literature identified severe acute respiratory syndrome coronavirus (SARS), Middle East Respiratory Syndrome Coronavirus (MERS), bovine Coronavirus, canine Coronavirus and feline Coronavirus are the significant classifications of Coronavirus family discuss in the literature. This study contributes to the literature by providing an elaboration of detailed mapping of the existing literature on the reviews of Coronavirus pandemic that is a more significant challenge for humanity in the current circumstances. Finally, the future of the world after the 2019-COVID is more challenging and vital for understanding in terms of economic and social perspective. Social structures will change the current situation is showing based on literature and reports. The economic recession will be prolonged if the researchers are not able to find the solution for the Coronavirus.